@PHDTHESIS{ 2024:942661382, title = {ON THE COSMIC ACCELERATION AND MATTER CLUSTERING IN MODIFIED f(R) GRAVITY MODELS}, year = {2024}, url = "http://localhost:8080/tede/handle/tede/190", abstract = "Titulo da tese em portugues: Sobre a aceleração cósmica e a aglomeração de matéria em modelos de gravidade modificada f(R) Entender a origem da atual expansão acelerada do universo é um dos maiores desafios da cosmologia moderna e da física de partículas. No contexto do modelo padrão da cosmologia, o modelo $\Lambda$CDM, essa aceleração é atribuída à constante cosmológica $\Lambda$, ou, equivalentemente, à densidade de energia do vácuo quântico, que é reconhecida como a forma mais simples de energia escura. Acontece que, seja por meio de uma constante cosmológica ou de formas mais gerais de energia escura, essa explicação para a origem da aceleração cósmica recente apresenta algumas inconsistências internas. Por um lado, dentro da visão padrão da cosmologia, dois problemas envolvendo a constante cosmológica preocupam tanto os físicos de partículas quanto os cosmólogos: ($i$) a densidade de energia do vácuo medida através de observações cosmológicas é surpreendentemente menor do que a estimada pela teoria quântica de campos (até 120 ordens de magnitude, dependendo da teoria utilizada); e ($ii$) as densidades normalizadas de energia do vácuo e da matéria possuem valores curiosamente próximos hoje, o que parece ser uma coincidência cósmica. Por outro lado, deveria ser possível observar a energia escura diretamente, uma vez que ela corresponde a aproximadamente $70\%$ da densidade total de energia do universo, de acordo com observações atuais. No entanto, nenhuma energia escura foi observada diretamente a nível fundamental (na física de partículas) até o momento. Todas as evidências de uma componente energética que exerce pressão negativa sobre o universo vêm de observações cosmológicas indiretas. A fim de evitar os problemas inerentes à constante cosmológica, ou a formas mais gerais de energia escura, alguns cenários alternativos baseados em uma modificação adequada da Relatividade Geral, a teoria atual da gravidade, foram propostos. Este é o caso das teorias de gravidade $f(R)$, que generalizam a gravitação substituindo o termo $R - 2\Lambda$ na Lagrangiana de Einstein-Hilbert por uma função geral do escalar de Ricci, $R$. Sabe-se que essas teorias explicam adequadamente a aceleração cósmica como um efeito da geometria do espaço-tempo, em vez de uma forma exótica de energia escura. Elas também são conformemente equivalentes à teoria de Einstein com a adição de um grau de liberdade extra no setor gravitacional, o scalaron, um campo escalar canônico cujo potencial é unicamente determinado pela curvatura escalar de Ricci, $R$. Nesta tese, estudamos a viabilidade cosmológica de três modelos $f(R)$, a saber, os modelos de Appleby-Battye, Hu-Sawicki e Starobinsky. Inicialmente, derivamos as equações de movimento para cada modelo e as resolvemos numericamente para parâmetros importantes do {\it background} cosmológico: a taxa de Hubble $H(z)$ e a equação de estado $w_\text{DE}(z)$. Como o background cosmológico é altamente degenerado, seguimos para o nível perturbativo resolvendo numericamente as equações diferenciais relacionadas ao contraste de densidade da matéria $\delta_\text{m}(z)$ e à taxa de crescimento normalizada na escala física correspondente à $8\,\text{Mpc}/h$, $[f\sigma_8](z)$, para cada modelo. Em seguida, realizamos análises estatísticas MCMC e restringimos os parâmetros livres dos modelos de Appleby-Battye e de Hu-Sawicki, considerando três conjuntos de dados cosmológicos: medições de $H(z)$ pelo método dos cronômetros cósmicos, $[f\sigma_8](z)$ a partir das observações do {\it redshift-space distortion}, e medições de $m_\text{B}(z)$ de supernovas do tipo Ia das colaborações Pantheon$+$ e SH0ES. Nossos resultados são consistentes com os reportados na literatura para os parâmetros cosmológicos, como a constante de Hubble ($H_0$), a densidade normalizada da matéria ($\Omega_{\text{m},0}$), a variância das flutuações da matéria na escala de $8\,\text{Mpc}/h$ ($\sigma_{8,0}$) e a magnitude absoluta ($M_\text{B}$), em ambos os casos. Além disso, nossos {\it best-fits} dos parâmetros dos modelos foram: $b=2.28^{+6.52}_{-0.55}$ (apenas dados de SNe Ia) e $b=2.18^{+5.41}_{-0.55}$ (combinação de dados SNe+CC+RSD), abrangendo a Relatividade Geral ($b \gg 1$) no nível de confiança de $2\sigma$, para o modelo de Appleby-Battye; e $\mu = 77.0^{+18.0}_{-56.0}$ (apenas dados de SNe Ia) e $\mu = 93.0^{+41.0}_{-55.0}$ (combinação de dados SNe+CC+RSD), o que exclui a Relatividade Geral ($\mu = 0$) no nível de confiança de $2\sigma$, para o modelo de Hu-Sawicki. Por fim, o critério de informação Akaike penalizou tanto o modelo de Appleby-Battye quanto o de Hu-Sawicki devido ao fato de cada um ter um parâmetro independente adicional em comparação com o modelo de referência $\Lambda$CDM plano: $\Delta AIC = 0.716$ e $\Delta AIC = 132.969$, respectivamente. No entanto, nossos resultados mostram que o modelo de Appleby-Battye exibe um valor de AIC muito próximo ao do modelo $\Lambda$CDM plano ($\Delta \text{AIC} \sim 0.7$), tornando-o uma alternativa competitiva ao modelo padrão na descrição da expansão acelerada e do crescimento das estruturas no universo, porém sem exigir qualquer energia escura exótica. Gravidade f(R); Gravidade modificada; Modelo de Appleby-Battye; Modelo de Hu-Sawicki; Modelo de Starobinsky", publisher = {Observatorio Nacional}, scholl = {Programa de Pós-Graduação em Astronomia}, note = {Divisão de Programas de Pós-Graduação - DIPPG} }