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Nacional/MCTIC, como parte dos requisitos
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Entender a origem da atual expansão acelerada do universo é um dos maiores

desafios da cosmologia moderna e da f́ısica de part́ıculas. No contexto do modelo

padrão da cosmologia, o modelo ΛCDM, essa aceleração é atribúıda à constante cos-

mológica Λ, ou, equivalentemente, à densidade de energia do vácuo quântico, que é

reconhecida como a forma mais simples de energia escura. Acontece que, seja por

meio de uma constante cosmológica ou de formas mais gerais de energia escura, essa

explicação para a origem da aceleração cósmica recente apresenta algumas incon-

sistências internas. Por um lado, dentro da visão padrão da cosmologia, dois prob-

lemas envolvendo a constante cosmológica preocupam tanto os f́ısicos de part́ıculas

quanto os cosmólogos: (i) a densidade de energia do vácuo medida através de ob-

servações cosmológicas é surpreendentemente menor do que a estimada pela teoria

quântica de campos (até 120 ordens de magnitude, dependendo da teoria utilizada);

e (ii) as densidades normalizadas de energia do vácuo e da matéria possuem valores

curiosamente próximos hoje, o que parece ser uma coincidência cósmica. Por outro

lado, deveria ser posśıvel observar a energia escura diretamente, uma vez que ela

corresponde a aproximadamente 70% da densidade total de energia do universo, de

acordo com observações atuais. No entanto, nenhuma energia escura foi observada

diretamente a ńıvel fundamental (na f́ısica de part́ıculas) até o momento. Todas

as evidências de uma componente energética que exerce pressão negativa sobre o

universo vêm de observações cosmológicas indiretas.
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A fim de evitar os problemas inerentes à constante cosmológica, ou a formas mais

gerais de energia escura, alguns cenários alternativos baseados em uma modificação

adequada da Relatividade Geral, a teoria atual da gravidade, foram propostos. Este

é o caso das teorias de gravidade f(R), que generalizam a gravitação substituindo o

termo R−2Λ na Lagrangiana de Einstein-Hilbert por uma função geral do escalar de

Ricci, R. Sabe-se que essas teorias explicam adequadamente a aceleração cósmica

como um efeito da geometria do espaço-tempo, em vez de uma forma exótica de

energia escura. Elas também são conformemente equivalentes à teoria de Einstein

com a adição de um grau de liberdade extra no setor gravitacional, o scalaron, um

campo escalar canônico cujo potencial é unicamente determinado pela curvatura

escalar de Ricci, R.

Nesta tese, estudamos a viabilidade cosmológica de três modelos f(R), a saber,

os modelos de Appleby-Battye, Hu-Sawicki e Starobinsky. Inicialmente, derivamos

as equações de movimento para cada modelo e as resolvemos numericamente para

parâmetros importantes do background cosmológico: a taxa de Hubble H(z) e a

equação de estado wDE(z). Como o background cosmológico é altamente degen-

erado, seguimos para o ńıvel perturbativo resolvendo numericamente as equações

diferenciais relacionadas ao contraste de densidade da matéria δm(z) e à taxa de

crescimento normalizada na escala f́ısica correspondente à 8Mpc/h, [fσ8](z), para

cada modelo. Em seguida, realizamos análises estat́ısticas MCMC e restringimos os

parâmetros livres dos modelos de Appleby-Battye e de Hu-Sawicki, considerando três

conjuntos de dados cosmológicos: medições de H(z) pelo método dos cronômetros

cósmicos, [fσ8](z) a partir das observações do redshift-space distortion, e medições

de mB(z) de supernovas do tipo Ia das colaborações Pantheon+ e SH0ES. Nossos

resultados são consistentes com os reportados na literatura para os parâmetros cos-

mológicos, como a constante de Hubble (H0), a densidade normalizada da matéria

(Ωm,0), a variância das flutuações da matéria na escala de 8Mpc/h (σ8,0) e a magni-

tude absoluta (MB), em ambos os casos. Além disso, nossos best-fits dos parâmetros

dos modelos foram: b = 2.28+6.52
−0.55 (apenas dados de SNe Ia) e b = 2.18+5.41

−0.55 (com-

binação de dados SNe+CC+RSD), abrangendo a Relatividade Geral (b ≫ 1) no

ńıvel de confiança de 2σ, para o modelo de Appleby-Battye; e µ = 77.0+18.0
−56.0 (apenas

dados de SNe Ia) e µ = 93.0+41.0
−55.0 (combinação de dados SNe+CC+RSD), o que

exclui a Relatividade Geral (µ = 0) no ńıvel de confiança de 2σ, para o modelo de

Hu-Sawicki. Por fim, o critério de informação Akaike penalizou tanto o modelo de

Appleby-Battye quanto o de Hu-Sawicki devido ao fato de cada um ter um parâmetro

independente adicional em comparação com o modelo de referência ΛCDM plano:

∆AIC = 0.716 e ∆AIC = 132.969, respectivamente. No entanto, nossos resultados

mostram que o modelo de Appleby-Battye exibe um valor de AIC muito próximo ao

do modelo ΛCDM plano (∆AIC ∼ 0.7), tornando-o uma alternativa competitiva ao
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modelo padrão na descrição da expansão acelerada e do crescimento das estruturas

no universo, porém sem exigir qualquer energia escura exótica.

Palavras-Chave: Gravidade f(R); Gravidade modificada; Modelo de Appleby-

Battye; Modelo de Hu-Sawicki; Modelo de Starobinsky
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Advisor: Armando Bartolome Bernui Leo

Co-advisor: Marcela Campista Borges de Carvalho

Department: Astronomy

Understanding the origin of the current accelerated expansion of the universe

is one of the greatest challenges in modern cosmology and particle physics. In the

context of the standard cosmological model, the ΛCDM model, this acceleration is

attributed to the cosmological constant Λ, or, equivalently, to the energy density of

the quantum vacuum, which is recognized as the simplest form of dark energy. It

turns out that, whether through a cosmological constant or more general forms of

dark energy, this explanation for the origin of recent cosmic acceleration has some

internal shortcomings. On the one hand, within the standard view of cosmology,

two issues involving the cosmological constant concern both particle physicists and

cosmologists: (i) the vacuum energy density measured via cosmological observations

is astoundingly smaller than that estimated by quantum field theory (up to 120

orders of magnitude, depending on the theory used); and (ii) the normalized vacuum

and matter energy densities have curiously close values today, which appears to be a

cosmic coincidence. On the other hand, it should be possible to observe dark energy

directly, since it corresponds to approximately 70% of the total energy density of

the universe according to current observations. However, no dark energy has been

observed directly at a fundamental level (in particle physics) to date. All evidence

of an energetic component exerting negative pressure on the universe comes from

indirect cosmological observations.

In order to avoid the issues inherent to a cosmological constant, or to more gen-

eral forms of dark energy, some alternative scenarios based on a suitable modification

of General Relativity, the current theory of gravity, have been proposed. This is the
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case with the f(R) theories of gravity, which generalize gravitation by replacing the

term R − 2Λ in the Einstein-Hilbert Lagrangian by a general function of the Ricci

scalar, R. Theses theories are known to properly explain cosmic acceleration as an

effect of the spacetime geometry, instead of an exotic form of dark energy. They

are also conformally equivalent to Einstein’s theory with the addition of an extra

degree of freedom in the gravitational sector, the scalaron, a canonical scalar field

whose potential is uniquely determined by the Ricci scalar curvature, R.

In this thesis, we study the cosmological viability of three f(R) models, namely,

the Appleby-Battye, Hu-Sawicki, and Starobinsky models. We first derive the equa-

tions of motion for each model and numerically solve them for important param-

eters of the cosmological background: the Hubble rate H(z) and the equation of

state wDE(z). Since the cosmological background is highly degenerate, we proceed

to the perturbative level by numerically solving the differential equations related to

the matter density contrast δm(z) and the normalized growth rate at the physical

scale of 8Mpc/h, [fσ8](z), for each model. Next, we perform MCMC statistical

analyses and constrain the free parameters of the Appleby-Battye and Hu-Sawicki

models by considering three cosmological datasets: H(z) measurements from the

cosmic chronometer method, [fσ8](z) from redshift-space distortion observations,

and type Ia supernovae mB(z) measurements from Pantheon+ and SH0ES col-

laborations. Our results are consistent with those reported in the literature for

the cosmological parameters, such as the Hubble constant (H0), the normalized

matter density (Ωm,0), the variance of matter fluctuations at the scale of 8Mpc/h

(σ8,0), and the absolute magnitude (MB), in both cases. Additionally, our best-

fit model parameters were: b = 2.28+6.52
−0.55 (SNe Ia data alone) and b = 2.18+5.41

−0.55

(SNe+CC+RSD data combination), encompassing General Relativity (b ≫ 1) at

2σ CL, for the Appleby-Battye model, and µ = 77.0+18.0
−56.0 (SNe Ia data alone) and

µ = 93.0+41.0
−55.0 (SNe+CC+RSD data combination), which excludes General Relativ-

ity (µ = 0) at 2σ CL, for the Hu-Sawicki model. Finally, the Akaike information

criterion penalized both the Appleby-Battye and Hu-Sawicki models due to each

having an additional independent parameter compared to the flat-ΛCDM reference

model: ∆AIC = 0.716 and ∆AIC = 132.969, respectively. However, our results

show that the Appleby-Battye model exhibits an AIC value very close to that of

the flat-ΛCDM model (∆AIC ∼ 0.7), making it a competitive alternative to the

standard model in describing the accelerated expansion and growth of structures in

the universe, but without requiring any exotic dark energy.

Keywords: f(R) gravity; Modified gravity; Appleby-Battye model; Hu-Sawicki

model; Starobinsky model
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Chapter 1

Introduction

Over a little more than two millennia, great questions have challenged the human

intellect, but none of them still seem as alive as what the cosmos is made of. This

issue has gained even more prominence over the last two decades, as the discovery

of the universe’s accelerated expansion has strengthened the idea that the universe

may not only consist of visible matter, i.e., dust and radiation, to which we were

accustomed, and cold dark matter (cold DM or CDM), necessary to explain the

anomaly in galaxy rotation curves and the acoustic peaks in the power spectrum

of the cosmic microwave background (CMB), but also an exotic form of energy,

generically called dark energy (DE), whose primary attribute is having negative

pressure. In the context of the standard ΛCDM model, such a negative pressure

that accelerates the expansion of the universe is attributed to a positive cosmological

constant, Λ, with equation of state (EoS) given by wΛ = PΛ/ρΛ = −1.

In 1998, two distinct groups of astrophysicists investigating the remnant light of

stellar explosions known as Type Ia supernovae (SNe Ia) – one led by S. Perlmutter

and the other by B. Schmidt and A. G. Riess – simultaneously concluded that the

universe is currently expanding at an accelerated rate, rather than decelerating as

previously expected. By combining the luminosity distance with the redshift of 58

SNe Ia known at the time, both groups found that the data was consistent with

accelerated expansion at more than 99.9% (3.9σ) CL [1, 2].

In the context of General Relativity (GR), a spatially flat universe, strongly

favored by observations, cannot undergo accelerated expansion in a scenario that

includes only non-relativistic matter and radiation. For such acceleration to occur,

an unknown form of energy, called dark energy, must exist and predominantly fill

space. The defining feature of dark energy is its negative pressure [3, 4].

It has been known since the works of A. Einstein [5] and W. de Sitter [6] that

the cosmological constant, Λ, with an EoS parameter given by wΛ = −1, possesses

this property, making it the simplest form of DE. In this context, Λ reappears in the

field equations of GR (this time on the right-hand side), and from the perspective of
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quantum field theory (QFT), it is reinterpreted as the contribution of the quantum

vacuum to the matter fields present in the universe [7].

The discovery of recent cosmic acceleration in 1998 inaugurated a novel era

of research in both cosmology and modern particle physics fields. Notably, the

quantum-mechanical interpretation of the cosmological constant, derived from the

quantum vacuum energy density, has led to what is considered one of the most

disastrous predictions in the history of physics. Estimates of Λ from cosmology and

QFT can differ by up to 120 orders of magnitude – a discrepancy known as the

cosmological constant problem or the vacuum catastrophe [8, 9]. Additionally, the

question arises as to why the energy density of the vacuum is so close to the matter

density today, a puzzle referred to as the cosmic coincidence problem [10, 11].

Although such issues concerning the cosmological constant gained proportion

only after the discovery of the cosmic acceleration, they were first formulated as

early as the late 1960s by Y. Zeldovich [7], and have been thoroughly investigated

since the 1980s through the use of scalar fields [12–14]. Unfortunately, none of

these attempts were successful. More critically, S. Weinberg demonstrated through

a no-go theorem1 that replacing Λ with a dynamic scalar field to explain the current

energy density of the quantum vacuum is not physically viable [8]. Consequently,

other DE models were proposed as alternatives to the cosmological constant, such as

the decaying vacuum [15], running vacuum [16], quintessence [17, 18], k-essence [19],

and Chaplygin gas [20].

The simplest and most direct way in order to investigate the nature of DE is

by parameterizing its equation of state wDE as a function of time t, or, equiva-

lently, of redshift z. In principle, there are no restrictions on modeling wDE(z),

and therefore any parameterization can be considered. Nonetheless, it is expected

that a good parameterization will be well-motivated, either through the QFT or

even by the unsolved quantum gravity. Additionally, since observations strongly

agree with the standard ΛCDM model, it is preferable that such a parameterization

arises from an expansion around wDE = −1, which corresponds to the cosmolog-

ical constant Λ, with higher-order terms being negligible. As a result, numerous

parameterizations of DE have been proposed in the literature, with the most well-

known thus far including the linear [21], Chevallier-Polarski-Linder (CPL) [22, 23],

logarithmic [24], Wetterich [25], Hannestad-Mörtsell [26], Gong-Zhang [27], Jassal-

Bagla-Padmanabhan [28], Lee [29], and Barboza-Alcaniz [30].

Although most of these models fit the observational data well, no DE particle has

been detected to date. Moreover, accepting a DE fluid that fills space necessarily

implies a modification of the standard model of particle physics, which is one of

1In theoretical physics, a no-go theorem is a mathematical statement showing that a particular
situation is not physically possible, based on the principles of quantum mechanics.
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the most thoroughly tested theories to date. Consequently, some alternatives to

DE, such as inhomogeneous cosmologies [31, 32] and the recent void-dominated

cosmology [33], have been proposed.

Another way to address the issues related to DE and properly explain the current

phase of cosmic acceleration is through the so-called f(R) theories, a particular case

of modified theories of gravity (MTGs) or extended theories of gravity (ETGs).

These theories are considered modifications of GR, obtained by replacing the term

R − 2Λ in the Einstein-Hilbert Lagrangian with an arbitrary function of the Ricci

scalar, R. This class of theories is conformally equivalent to Einstein’s theory with

the addition of an extra degree of freedom in the gravitational sector, the scalaron, a

canonical scalar field whose potential is uniquely determined by the scalar curvature

R [34, 35].

Modifying gravity is actually an old task that dates back to the very conception

of GR theory. The first attempts took into account theories aligned with Mach’s

principle, such as the prototype Brans-Dicke theory [36] and general scalar-tensor

theories [37], theories compatible with Maxwell’s electromagnetism, such as the

Kaluza-Klein higher-dimensional theories [38–40], and theories subject to renormal-

ization, like the general higher-order theories [41, 42]. Recently, some modified

theories of gravity have been proposed to explain the cosmic acceleration of the

universe; this is the case of the f(R) theories [43].

The f(R) models offer alternative scenarios in which the recent cosmic accelera-

tion is an effect of the spacetime geometry, rather than an unknown and exotic form

of energy, such as DE. However, on theoretical grounds, the majority of these models

are rejected, with only those that reduce to GR in some limit, and for this called

viable models [44–46]. In fact, a critical feature is that, in general, they cannot be

naturally incorporated into any high-energy theory; they require proper fine-tuning

related to the unbounded growth of the scalaron mass [45]. Various approaches

have been proposed to mitigate this problem, such as introducing additional terms

in the f(R) action, like an R2 term, with a sufficiently small coefficient to ensure

the existence of primordial inflation [35, 47]. These additional terms are intended to

stabilize the scalaron mass and alleviate the fine-tuning requirements, making the

models consistent with observations.

The first successful f(R) model was proposed by Starobinsky in order to explain

early inflation, with the generic form R + ϵR2, where ϵ > 0 [48]. Since then, many

f(R) models have been proposed, considering from simple polynomial forms to more

complex functions of R (e.g., Amendola et al. [44], Tsujikawa [45], Hu-Sawicki [46],

Starobinsky [47], Appleby-Battye [49–51], Li-Barrow [52], Amendola-Tsujikawa [53],

Cognola et al. [54], Linder [55], Elizalde et al. [56], Xu-Chen [57], Nautiyal et al. [58],

Gogoi-Goswami [59], and Oikonomou [60, 61]).
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Notice, however, that within the class of viable models, there is a degeneracy

because various f(R) models describe the accelerated cosmic expansion as accurately

as the flat-ΛCDM. In such cases, the best model for replicating matter clustering in

the observed universe [62–66] must be determined at the perturbative level [67].

It turns out that alternative cosmological models undergo a statistically less

efficient process of fitting observational data, mainly because they have more pa-

rameters than the flat-ΛCDM model, which has only six free parameters. However,

this is not always the case when Bayesian statistical analysis is applied, as the results

can vary significantly depending on the choice of priors.

In this thesis, we will primarily investigate the R2-corrected Appleby-Battye

(AB) model, proposed in Ref. [51], which, for simplicity, will be referred to through-

out the text as the R2-AB model. This model is an improvement of the original AB

model [49, 50], where a term proportional to R2, with a sufficiently small coefficient

to ensure primordial inflation, was added to resolve the weak curvature singularity

problem [35, 51], generically present in f(R) models. There are several reasons for

analyzing this model. First, it has passed many important tests (e.g., classical and

semi-classical stability, Solar System constraints, correct primordial nucleosynthesis

of light elements, and includes radiation, matter, and dark energy epochs), making

it a viable alternative for explaining the current accelerated epoch. Additionally,

no studies have yet analyzed this model using cosmological data to investigate its

parameters. Notably, if this model shows good agreement with observational data,

it could provide a geometrical explanation for the current accelerated expansion,

eliminating the need for assuming a (non-physical) dark energy component in the

universe. Finally, we compare this model with the flat-ΛCDM concordance model

and with other two f(R)’s widely used for fitting different observational dataset, the

Hu-Sawicki (HS) [46] and Starobinsky [47] models.

For this purpose, we have structured the thesis into four major chapters, in

addition to this Introduction and the final Conclusions, as well as two appendices, A

and B. In Chapter 2, we introduce the current theory of gravity, Einstein’s General

Relativity, which serves as the foundation for modern cosmological theory. From

this theory, the necessary modifications are made in the geometric sector to address

phenomena on both small scales, such as renormalization and quantization, and

cosmological scales, such as the recent cosmic acceleration. In Chapter 3, we present

modern cosmology, focusing on the standard Friedmann-Lemâıtre-Robertson-Walker

(FLRW) model and the flat-ΛCDM concordance model. We also discuss the current

status of relevant cosmological observations, such as the CMB, BAO, and LSS data.

Chapter 4 outlines the framework of modified gravity theories, covering their key

motivations, concepts, tools, viability criteria, main theories, and alignment with

observations. The first half of the chapter focuses on pioneering work in Brans-Dicke
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theories, general scalar-tensor theories, and higher-order theories of gravity, while

the second half is dedicated to f(R) theories and their developments in cosmology. In

Chapter 5, we delve into the study of the R2-corrected Appleby-Battye, Hu-Sawicki,

and Starobinsky f(R) models. We numerically solve these models and perform

MCMC simulations, considering: i. SNe Ia data exclusively, and ii. joint analysis

of SNe+CC+RSD data, for the R2-AB and HS models. The results are compared

to the flat-ΛCDM reference model using the Akaike information criterion (AIC).

Finally, in Appendix A, we provide tables detailing the history of H0 measurements

that led to the current Hubble tension. Appendix B contains the main Python codes

used in our analyses.
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Chapter 2

Fundamentals of General

Relativity

General Relativity theory is the natural generalization of Special Relativity (SR)

when considering gravitational fields, or non-inertial observers. Since the Newtonian

description of gravity cannot be properly incorporated into a relativistic framework,

GR also offers an extended and improved approach to this phenomenon. The basic

idea is that, while most fundamental forces of nature are described by fields defined

on spacetime – such as the electromagnetic field and the fields characterizing the

weak and strong nuclear interactions – gravity is inherent in the very structure of

spacetime. Ultimately, gravity is a manifestation of the curvature of spacetime.

In this chapter, we will discuss the key aspects of GR, such as physical principles,

mathematical tools, field equations, and the Newtonian limit. This foundation will

help us understand how the geometric and matter-energy quantities arise, correlate,

and what their respective roles are in the field equations. In other words, we will

explore how gravity can be explained through the geometric properties of spacetime

and how it affects and responds to the matter-energy content.

2.1 Physical principles and assumptions

The theoretical framework of the natural sciences, particularly physics, is built upon

a strong foundation of physical principles. Unlike physical laws, which are state-

ments about the behavior of nature that can be derived from experimental observa-

tions, physical principles are accepted as true from the outset; they do not emerge

directly from experience but are supported by it. For example, the principle of en-

ergy conservation is widely regarded as true, as a plethora of phenomena can only

be explained in light of this principle, and no experiment to date has demonstrated

its violation.
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In this context, GR theory relies on three basic principles [68–72]:

1. the principle of relativity (PR) asserts that all observers are equally valid in

describing physical laws,

2. the equivalence principle (EP) states that the effects of gravity and accelera-

tion are locally indistinguishable, i.e., there are no local experiments that can

discern between the two effects, and

3. the principle of general covariance (PGC) complements the equivalence prin-

ciple (EP) by requiring that all physical laws be expressed in the same math-

ematical form for any coordinate system.

Some notes about both the EP and PGC deserve to be highlighted. First, the EP

is often divided into two forms in textbooks:

2a. the weak EP, stating that inertial mass is equal to gravitational mass, and

2b. the strong EP, which states that even in a strong gravitational field it is possible

to locally define an observer for which the laws of SR (the flat Minkowski

spacetime) are valid.

A direct consequence of the EP is the gravitational redshift [73], i.e., the change in

the energy of photons as they propagate in the gravitational field, while the PGC

requires for a theoretical description based on tensor quantities.

In addition, GR theory makes the following assumptions about the spacetime,

gravity and matter:

i. spacetime is a four-dimensional curved manifold endowed with a metric1,

ii. gravity is, actually, a manifestation of the curvature of the spacetime,

iii. spacetime curves onto itself and its curvature is locally determined by the

distribution of the matter-energy sources, and

iv. free particles, including photons, follow a geodesic in the curved spacetime.

Therefore, two notable differences between Einstein’s and Newton’s theories of grav-

ity are as follows: First, in Newton’s view, gravity is formulated as a fundamental

force, while in Einstein’s view, it is an effect of the curvature of spacetime. Second,

according to Einstein’s theory, radiation is able to produce a gravitational field and

is also affected by it.

1metric is a mathematical object capturing all the geometric and causal structure of the space-
time, defining the notions of time, distance, volume, curvature, angle, and causality [68–72].

7



GR is also based on the principle of causality (PC), which states that each point

in spacetime, considered as an event, must have a notion of past, present, and

future that is the same for all observers. Briefly, the PC establishes a unidirectional

relationship between cause and effect, where the cause always precedes the effect.

This understanding of causality arises from SR but needs to be generalized in GR:

• the effect must belong to the future light cone of its cause for all curved

spacetime; and

• since the curvature of spacetime can tilt light cones from one place to another,

causality must be considered a local notion, i.e., an object is influenced directly

only by its immediate surroundings.

The first statement is known as the strong PC, whereas the second is referred to as

the weak PC.

In principle, it is possible for light cones to be distorted enough that an observer

can move toward the future along a timelike path and yet intersect itself at a point

in its past – this phenomenon is known as a closed timelike curve (CTC). Although

CTCs do not violate causality, they are known to give rise to paradoxes (e.g., the

grandfather paradox). To ensure the absence of CTCs and their paradoxical conse-

quences, restrictions are imposed on the matter-energy distribution, referred to as

energy conditions.

Another principle that GR has attempted to incorporate is Mach’s principle.

This principle argues against the Newtonian view of absolute space and time, which

violates the PR, and supports the universal relativity of motion. Mach’s conjecture

states that every motion, even non-uniform ones, should be understood in relation

to the global matter distribution in the universe. Thus, inertia arises from the inter-

action between all bodies in the universe. However, GR does not fully incorporate

Mach’s principle, as some remnants of Newtonian absolute space are still present in

the Einstein field equations.

Finally, GR must reduce to the other two theories in the following situations:

1. in the limit of zero gravity, it must recover flat Minkowski spacetime, and

2. in the limit of weak gravitational field and slow motions, it must reduce to

Newtonian gravity.

The first point is straightforward, as GR is a natural generalization of SR in the

presence of gravitational fields, or, equivalently, when non-inertial observers are

considered. The second point, although incomplete, shows that Newtonian gravity

has achieved countless successes and continues to be verified in observations involv-

ing the formation and dynamics of small celestial bodies, planetary systems, stars,

galaxies, and galaxy clusters.
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2.2 Mathematical tool

The first mathematical notion infused in GR theory, arising from the PGC, is that

of tensors living on a four-dimensional curved manifold – one temporal and three

spatial – known as relativistic spacetime. While the 3+1 dimensional relativistic

spacetime defines the environment where physics process occur, tensors describe the

physical quantities involved in theses processes. The main tensors addressed in GR

theory are:

• the metric tensor, gµν ;

• the Riemann tensor, Rλ
µνρ;

• the Ricci tensor, Rµν ;

• the Einstein tensor, Gµν ; and

• the stress-energy tensor, Tµν .

Another important quantity in this theory is the Levi-Civita connection, also known

as the Christoffel symbols, denoted by Γλµν . These symbols, whose components

transform according to a specific law, are sometimes referred to as pseudo-tensors.

2.2.1 Metric tensor

The metric tensor, or simply the metric, defines the entire geometric and causal

structure of relativistic spacetime, deriving the notions of space, time and causality.

To begin, let us consider the case of SR, where the interval between events occurring

in spacetime is described by the Minkowsky line element,

ds2 = ηαβdξ
αdξβ , (2.1)

where ηαβ is the Minkowski metric ηαβ = diag(−1, 1, 1, 1) and ξα represents a freely

falling (inertial) coordinate system. From this point onward, we will use Einstein’s

summation convention, where a pair of repeated indices – one covariant and the

other contravariant – implies summation, as follows.

• Greek alphabet is used for time and space components, where the indices take

on values α, β, µ, ν, ... = (0, 1, 2, 3).

• Latin alphabet is used for spatial components only, where the indices take on

values i, j, k, l... = (1, 2, 3).
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A sum index, such as α in Eq. (2.1), is a dummy index, since any symbol can replace

it without changing the meaning of the expression (as long as it does not coincide

with another index already used in the same term).

In the curved spacetime of GR, it is convenient to use a generic coordinate system

xµ, such that ξα = ξα (xµ), and the infinitesimal variation dξα is given by

dξα =
∂ξα

∂xµ
dxµ . (2.2)

By replacing equation above in Eq. (2.1), we obtain the general line element

ds2 = gµνdx
µdxν , (2.3)

where the metric tensor gµν was defined as [68]

gµν ≡
∂ξα

∂xµ
∂ξβ

∂xν
ηαβ . (2.4)

The metric tensor is also referred to as the fundamental tensor and has the following

properties: (i) it is symmetric in the sense of

gµν = gνµ , (2.5)

and (ii) the inverse metric, denoted by gµν , is defined so that

gµλg
λν = δνµ ≡

{
1 , if µ = ν

0 , if µ ̸= ν
, (2.6)

where δνµ is the Kronecker tensor. The metric tensor also has a signature, often

defined either as a pair of integers specifying the number of negative and positive

components in spacetime, or as an explicit list of signs along the leading diagonal.

In our convention, we adopt the metric signature (−,+,+,+), in which the time

coordinate is negative, and the spatial components are positive. Therefore, a vector

Uµ is classified as 
timelike

null

spacelike

, if gµν U
µUν


< 0

= 0

> 0

. (2.7)

As we will see below, these relations are crucial in describing what kind of paths the

particles (massive and non-massive) follow in the general relativistic spacetime. In

effect, if the tangent vectors to a curve are timelike, null or spacelike, we describe

the curve as timelike, null or spacelike, respectively.

10



The last noteworthy property of general relativistic spacetime is the so-called

metric compatibility, which is established by the condition

∇αgµν = 0 . (2.8)

This proposition allows us, first of all, to commute the metric tensor gµν with the

covariant derivative ∇α, such that

gµν∇αV
ν = ∇α (gµνV

ν) = ∇αVµ , (2.9)

gµν∇αW
νρ = ∇α (gµνW

νρ) = ∇αW
ρ
µ , (2.10)

whatever the fields V ν and W νρ defined in the curved spacetime. The vanishing of

the covariant derivative of the metric, or metric compatibility, is the condition for

choosing a specific connection. If the geometry of spacetime is also assumed to be

torsion-free, this connection is the Levi-Civita connection [69–72].

2.2.2 Geodesic connection

In counterpart, the connection determines the trajectory of free particles, i.e., the

geodesic structure, in general relativistic spacetime. Let us consider a particle mov-

ing freely under the exclusive influence of gravity. According to the EP, there exists

a locally inertial coordinate system ξα in which the particle’s equation of motion

follows a straight line in spacetime, i.e. [68]

d2ξα

dτ 2
= 0 , (2.11)

where τ is the proper time defined as

−c2dτ 2 ≡ ds2 . (2.12)

In terms of an arbitrary coordinate system xλ, Eq. (2.11) becomes

d2xλ

dτ 2
+ Γλµν

dxµ

dτ

dxν

dτ
= 0 . (2.13)

where Γλµν is called an affine connection, defined as [68]

Γλµν ≡
∂xλ

∂ξα
∂2ξα

∂xµ∂xν
, (2.14)
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Notice that, in principle, we can set another connection simply by permuting the

lower indices µ and ν in Eq. (2.14). Then one can define the torsion tensor as

T λ
µν ≡ Γλµν − Γλνµ . (2.15)

Consequently, a torsion-free connection is achieved when the connection coefficients

are symmetric, and vice versa, i.e.,

T λ
µν = 0 ⇔ Γλµν = Γλνµ . (2.16)

In this case, the connection is called the Levi-Civita connection, and its components

with respect to a system of local coordinates are known as the Christoffel symbols.

Thus, these coefficients are alternatively called either the Levi-Civita connection or

the Christoffel symbols.

In GR, we assume both properties of metric compatibility, as expressed in

Eq. (2.8), and torsion-free, as stated in Eq. (2.16), such that the Christoffel symbols

are computed by

Γλµν =
1

2
gλρ (∂µgρν + ∂νgµρ − ∂ρgµν) . (2.17)

Christoffel symbols can be of two kinds: the above form corresponds to the second

kind, whereas the first is defined as Γλµν = gλρΓ
ρ
µν . Moreover, it is direct to derive

that they are unique [69–72].

In the context of GR, we need to work with two additional hypotheses: metric

compatibility, characterized by Eq. (2.8), and a torsion-free connection, achieved by

Eq. (2.16). In this framework, the connection is the Levi-Civita connection, whose

coefficients are the Christoffel symbols, determined by Eq. (2.17). Consequently, all

relativistic geometric quantities are defined entirely in terms of the metric gµν .

2.2.3 Curvature and related tensors

In a two-dimensional manifold, the curvature at a given point is characterized by

a scalar, known as the Gaussian curvature. In contrast, for a three-dimensional

manifold, a second-order tensor, called the Ricci tensor, is required to describe the

curvature. However, for an N-dimensional Riemannian manifold, with N > 3,

the curvature at a given point is characterized by a fourth-order tensor, known as

the Riemann tensor. Consequently, both the Ricci and Riemann tensors are often

referred to as curvature tensors.

Let Uλ be a vector defined in the GR 3+1 dimensional spacetime. The Riemann

tensor Rλ
µνρ measures the non-commutativity of the covariant derivatives∇ν and∇ρ,

expressed as

(∇ν∇ρ −∇ρ∇ν)Uλ = Rλ
µνρ Uµ . (2.18)

12



In terms of the Christoffel symbols, we shall have

Rλ
µνρ ≡ ∂νΓ

λ
µρ − ∂ρΓ

λ
µν + ΓσµρΓ

λ
σν − ΓσµνΓ

λ
σρ . (2.19)

In a flat geometry and Cartesian coordinates, the derivatives commute, and Γλµν = 0,

which implies that Rλ
µνρ = 0. The converse is also true. In general, Riemann tensor

has N4 components. However, it possesses the following symmetries,

Rλµνρ = −Rλµρν , (2.20)

Rλµνρ = −Rµλρν , (2.21)

Rλµνρ = Rνρλµ , (2.22)

where Rλµνρ ≡ gλσR
σ
µνρ, which allows reducing this number to just N2(N2 − 1)/12

independent components; this means 20 for N = 4, 6 for N = 3, and only one for

N = 2. Such symmetries follow from the Bianchi’s identities,

Rλ
µνρ +Rλ

νρµ +Rλ
ρµν = 0 , (2.23)

∇σR
λ
µνρ +∇νR

λ
µρσ +∇ρR

λ
µσν = 0 . (2.24)

The Riemann tensor defined above has two successive contractions resulting in

further curvature quantities of great importance in GR. First, the Ricci tensor

Rµν ≡ Rλ
µνλ = ∂νΓ

λ
µλ − ∂λΓ

λ
µν + ΓρµλΓ

λ
ρν − ΓρµνΓ

λ
ρλ , (2.25)

and second, the Ricci scalar

R ≡ gµνRµν = Rµ
µ . (2.26)

There are, in principle, two other possible contractions of the Riemann tensor. The

first contraction vanishes, Rλ
λνρ = 0, because of Eq. (2.20), and the second is the

negative of the Ricci tensor, Rλ
µλν = −Rλ

µνλ = −Rµν , due to Eq. (2.21). As a result,

the Ricci tensor and Ricci scalar defined in Eqs. (2.25) and (2.26) are the two only

successive traces of the Riemann tensor.

The Ricci tensor is symmetric, i.e.,

Rµν = Rνµ . (2.27)

Thus, it has a total of 10 independent components. Of course, this number coincides

with the number of independents components of both the Einstein and stress-energy

tensors, main tensors appearing in the field equations of GR.
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Finally, the Einstein tensor Gµν is defined as

Gµν ≡ Rµν −
1

2
Rgµν . (2.28)

Using Bianchi’s identities it is possible to verify that

∇µG
µν = 0 , (2.29)

where Gµν = gµλgνρGλρ. As the covariant derivatives of both the constant Λ and

metric tensor gµν vanish, we can introduce the term Λgµν in Eq. (2.28) such that

∇µ (G
µν + Λgµν) = 0 . (2.30)

The term Λ is the cosmological constant, and the expression inside the parentheses

forms the left-hand side of the GR field equations. Since the right-hand side of these

equations is given by a constant multiplied by the stress-energy tensor Tµν , which

has a vanishing divergence, the left-hand side must also be divergenceless.

2.3 Stress-energy tensor

The stress-energy tensor, often referred to as the stress-momentum-energy tensor or

momentum-energy tensor and denoted by Tµν , is a second-order tensor that charac-

terizes matter fields (i.e., continuum matter distribution) in relativistic spacetime.

It provides a unified description of all sources of the gravitational field (curvature),

encapsulating the contributions from stress, momentum, and energy. Since mass and

energy are indistinguishable according to SR, radiation fields also work as sources

of gravitational fields, as well as being affected by them.

2.3.1 General features

Every component of the stress-energy tensor encodes a physical property of the

continuum matter distribution. In a given frame, we have to:

• T00 corresponds to the energy density,

• T0i denotes the energy flux in the i-direction,

• Ti0 is the ith component of the momentum density, and finally

• Tij is the flux of the ith component of the momentum in the j-direction.

Because this tensor is symmetric, i.e.,

Tµν = Tνµ , (2.31)
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the flux energy in the i-direction corresponds to the ith component of the momentum

density. Tij components, in turn, are divided in two pieces: first, i = j components

correspond to the isotropic pressure along of the matter distribution, and second,

i ̸= j describe the shear stresses obeying Tij = Tji.

In addition to being symmetric, the stress-energy tensor must also be divergence-

free, i.e.,

∇µT
µν = 0 , (2.32)

where T µν ≡ gµλgνρTλρ is the full covariant form of the stress-energy tensor Tµν .

Eq. (2.32) represents the energy-momentum conservation, which emerges as a direct

consequence of the symmetries present in general relativistic spacetime, particularly

in relation to the principle of general covariance discussed in Section 2.1.

2.3.2 Energy conditions

In GR and allied theories, the stress-energy tensor Tµν capture the distribution of

stress, energy, and momentum associated with matter-energy fields. However, the

field equations per se does not specify what kinds of states of matter-energy fields

are physically admissible. Instead, such criteria are derived from specific guidelines

known as energy conditions.

There are several different ways to formulate the standard energy conditions in

classical GR. Here, we will describe the four most commonly encountered conditions

using their physical forms.

1. Null Energy Condition (NEC): This condition stipulates that for every future-

pointing null vector field V µ, we must have

Tµν V µV ν ≥ 0 . (2.33)

The NEC implies that the energy density measured along any null geodesic

is non-negative, which is essential for the consistency of causal structures in

spacetime.

2. Weak Energy Condition (WEC): For every future-pointing timelike vector field

W µ, the WEC requires that

Tµν W µW ν ≥ 0 . (2.34)

This condition ensures that the energy density as measured by any observer

is non-negative.

3. Strong Energy Condition (SEC): The SEC imposes the requirement that for
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any future-pointing timelike vector field W µ,(
Tµν −

1

2
Tgµν

)
W µW ν ≥ 0 , (2.35)

where T is the trace of the stress-energy tensor, defined as T ≡ gµνTµν ≡ T µµ .

The SEC essentially asserts that the energy density and pressures combined

should result in an attractive gravitational effect.

4. Dominant Energy Condition (DEC): The DEC states that for every future-

pointing timelike vector field W µ,

TµνU
µ ≥ 0 , (2.36)

and the vector Tµ derived from the stress-energy tensor must be causal. This means

that the flow of energy-momentum must be such that it can be associated with

physical particles, ensuring that they move slower than the speed of light.

While such energy conditions have physical relevance, especially in ensuring

causality, they cannot be considered absolute. In fact, some observed quantum

phenomena are known to violate certain conditions. For example, in the Casimir ef-

fect [74, 75], the energy density existing between two conducting plates held parallel

at a very small separation is negative. Thus, the Casimir effect apparently violates

the NEC [76].

2.3.3 Perfect fluid

In many interesting situations covering both astrophysics and cosmology, the source

of the gravitational field can be taken to be a perfect fluid as a first approximation.

Fundamentally, a fluid is a special kind of continuum of matter, consisting of a

very large number of particles, such that its behavior is described solely in terms

of average or bulk quantities. In a perfect fluid, effects like viscosity and heat

conduction vanish. Ultimately, we can think of the universe on sufficiently large

scales, as observations have pointed to a minimum scale of statistical homogeneity

and isotropy of about 200Mpc, as a perfect fluid.

A perfect fluid can be characterized by two scalar fields, its energy density ρ(t)

and its pressure P (t), as well as a vector field, its four-velocity uµ(t), which depend

only on time. The stress-energy tensor for this fluid is given by [69–71]

T µν =

(
ρ+

P

c2

)
uµuν + Pgµν . (2.37)
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The four-velocity is defined in a general frame as

uµ ≡ dxµ

dτ
= γLv

µ = γL(c, v
i) , (2.38)

where γL ≡ dt/dτ = 1/
√

1− v2/c2 is known as the Lorentz factor. In the fluid rest

frame, the four-velocity uµ is given by [71]

uµ = (c, 0, 0, 0) . (2.39)

Notice that only in its rest frame does the fluid not exhibit heat conduction, i.e.,

T 0i = T i0 = 0. We also emphasize that vµ ≡ dxµ/dt is the coordinate velocity,

vi = dxi/dt is the spatial three-velocity, and v ≡ |v⃗| =
√
vivi is the magnitude of

the three-velocity v⃗. Since we have set c2dτ 2 = −gµνdxµdxν , the four-velocity obeys

gµνu
µuν ≡ uµu

µ = −c2 . (2.40)

The four-velocity uµ does not represent the velocity of the particles through space,

which can vary in magnitude. Rather, it describes their velocity through spacetime,

at which they always travel at a constant rate.

After some calculations, the covariant energy-momentum conservation for the

perfect fluid results in

∇µ (ρu
µ) +

P

c2
∇µu

µ = 0 , (2.41)

and (
ρ+

P

c2

)
uµ∇µu

ν +

(
gµν +

1

c2
uµuν

)
∇µP = 0 . (2.42)

These equations correspond to the continuity and acceleration equations, respec-

tively. Our assertion regarding the divergenceless nature of the stress-energy tensor

is now clear. As we will demonstrate later, Eqs. (2.41) and (2.42) must reduce to

the classical continuity and Euler equations for slowly moving particles (v ≪ c) and

small pressures (P/c2 ≪ ρ).

2.4 Field equations

Just as Maxwell’s equations describe the electromagnetic fields produced by charges

and currents, Einstein’s field equations govern how the metric gµν responds to energy

and momentum of matter fields Tµν and vice versa.

After some unsuccessful attempts to couple the metric of relativistic spacetime

to the stress-energy tensor, Einstein formulated the following field equations:

Gµν + Λgµν = κ2Tµν , (2.43)
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where κ2 is the Einstein’s constant, which shall be determined by requiring that the

field equations (2.43) reduce to the Poisson equation for the Newtonian potential in

the weak-field, time-independent, slowly-moving-particles limit.

The field equations (2.43) are formulated in such a way that, according to

Bianchi’s identities, metric compatibility of the connection, and energy-momentum

conservation, both sides of the equality are divergence-free. They constitute a set

of 10 generally covariant, non-linear second-order PDEs2 in the metric tensor gµν .

2.4.1 Variational approach

As with most field theories, the Einstein’s field equations (2.43) can be derived from

a variational principle known as the principle of least action. The functional giving

rises to the GR field equations is the Einstein-Hilbert (EH) action,

SEH =

∫
d4x

√−g
[

1

2κ2
(R− 2Λ) + LM(gµν , ϕM)

]
, (2.44)

where g is the determinant of the metric and LM is the Lagrangian density of the

matter fields ϕM. The gravity Lagrangian density has been taken to be

LEH ≡ 1

2κ2
√−g(R− 2Λ) . (2.45)

Since the Ricci scalar R is a function of the metric only, expressed ast R = R(gµν),

the variation of Eq. (2.44) with respect to the metric tensor gives the field equations

(2.43), where

Tµν ≡ − 2√−g
δ (

√−gLM)

δgµν
. (2.46)

The factor
√−g is included in order to ensure that

√−gL transform as a scalar

under coordinate transformation xµ → x̃µ (xµ). This property ensures that SEH

is invariant under general coordinate transformations and that the resulting tensor

field equations are divergence-free, meaning that Bianchi’s identities and energy-

momentum conservation are automatically satisfied.

2.4.2 Vaccum energy

A notable feature of GR is that the sources of the gravitational field are represented

by the entire stress-energy tensor, such that in the absence of such sources, we have

Tµν = 0. In this case, the Einstein’s field equations are given by

Gµν = −Λgµν . (2.47)

2The acronym PDEs corresponds to partial differential equations.

18



The strategy here of moving the cosmological constant term to the right-hand side

and considering it as part of the stress-energy tensor is advantageous, as we can now

interpret Λ as the energy density of the vacuum, such that

T vac
µν ≡ TΛ

µν = −Λgµν . (2.48)

Notice that the energy-momentum conservation is automatically satisfied, i.e.,

∇µT vac
µν ≡ gµρ∇ρT

vac
µν = 0. Although the vacuum is not a traditional source of

the gravitational field, this interpretation is important, as QFT predicts that it

should possess some form of energy and momentum [77]. In this way, we can write

Einstein’s field equations as

Gµν = κ2Tµν , (2.49)

where

Tµν ≡ TM
µν + T vac

µν . (2.50)

Here, the letter M stands for matter and radiation fields. Meanwhile, the terms

cosmological constant and vacuum energy are essentially interchangeable.

In general, the vacuum state must be Lorentz invariant, such that the associated

stress-energy tensor T vac
µν needs to be proportional to the diagonal Minkowski metric

ηµν in any locally inertial frame, i.e.,

T vac
µν = −ρvac ηµν , (2.51)

where ρvac is the vacuum energy density. This can be straightforwardly generalized

from inertial frames to arbitrary coordinates as

T vac
µν = −ρvac gµν . (2.52)

As we have seen previously, a perfect fluid is described by a diagonal stress-energy

tensor. It follows from this that the vacuum must behave like a perfect fluid with

equation of state given by

wvac ≡
Pvac

ρvac
= −1 . (2.53)

The vacuum energy density must be constant throughout spacetime since its gradient

would not be Lorentz invariant.

By comparing Eqs. (2.52) and (2.49), we obtain

Pvac = −ρvac = − Λ

κ2
. (2.54)

In quantum mechanics, a harmonic oscillator with frequency ν has a ground state

energy given by E0 = 1
2
ℏν. A quantized field can be thought of as a collection of

19



an infinite number of these oscillators, with each mode contributing to the ground

state energy. Adding all of these contributions together yields an infinite result.

However, we can rule out the very high-momentum modes introducing a certain

ultraviolet momentum cutoff. The final vacuum energy, which is the sum of the

energies of the ground state oscillations of all the fields in the theory, scales as

ρvac ∼ m4
Pl ∼ (1018GeV)4.

2.4.3 Newtonian limit

Given the previous success of universal gravitation in explaining the inhomogeneities

at small scales (e.g., galaxies, galaxy clusters, superclusters, and filaments) and

compact objects (e.g., comets, moons, planets, and stars), it is necessary for GR to

recover Newtonian theory in the limit of weak, static, and slow-motion gravitational

fields. This is referred to as the Newtonian limit or weak-field approximation.

In order to realize the Newtonian limit of the GR field equations, let us start by

considering the Einstein field equations in the alternative form

Rµν = κ2
(
Tµν −

1

2
Tgµν

)
, (2.55)

where T ≡ gµνTµν = T µµ is the trace of the stress-energy tensor. The important

equation here is the one corresponding to the time-time, or 0-0, component, as it

reduces to the usual Poisson equation for the gravitational potential Φ.

Next, we consider that our weak field arises from a perfect fluid whose particles

have small velocities v compared to the speed of light c. Such a fluid has a stress-

energy tensor given by

T µν = ρ uµuν . (2.56)

The above equation corresponds to the limits v ≪ c and P/c2 ≪ ρ in Eq. (2.37),

as the majority of classical distributions obey. In the rest frame of the fluid itself,

the four-velocity can be described as the diagonal matrix uµ = (c, 0, 0, 0). It follows

from this that

T = −T00 = −ρc2 . (2.57)

As we are looking for a weak field corresponding to small deviations from the

SR flat spacetime, the geometric aspect of the problem consists of expanding the

metric gµν around the Minkowski metric ηµν , such that

gµν = ηµν + hµν , (2.58)

in which |hµν | ≪ 1 configures a small perturbation in the locally flat spacetime

due to slow-velocity-particles distribution in Eq. (2.56). After some straightforward
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calculations, the first-order approximation yields the following result:

R00 = −1

2
∇2h00 , (2.59)

where ∇2 ≡ δij∂i∂j is the Laplacian operator. Then, by replacing Eqs. (2.57)

and (2.59) into Eq. (2.55), we obtain

−1

2
∇2h00 =

1

2
κ2ρc2 . (2.60)

The perturbations hµν carried by the metric can be defined in multiple ways, as

there is a gauge freedom when choosing the perturbative variables. By fixing what

is called the Newtonian gauge, where h00 = −2Φ/c2, we obtain

∇2Φ =
1

2
κ2ρ , κ2 ≡ 8πG

c4
, (2.61)

which is the classical Poisson equation for the Newtonian potential Φ. Notice that we

also find the Einstein’s constant in terms of the Newtonian constant G. By replacing

the default values of the constants above, we obtain κ2 ≃ 2.077× 10−43 N−1.

To complete our task of recovering the full Newtonian limit from GR theory, we

should now examine Eqs. (2.41) and (2.42), which automatically reduce to

∇µ (ρv
µ) = 0 , (2.62)

ρvµ∇µv
ν +

(
ηµν +

1

c2
vµvν

)
∇µP = 0 , (2.63)

respectively. In three-vector notation, they can be rewritten as

∂ρ

∂t
+∇ · (ρv⃗) = 0 , (2.64)

ρ

(
∂

∂t
+ v⃗ · ∇

)
v⃗ = −∇P . (2.65)

As is known, Eqs. (2.64) and (2.65) are the classical continuity and Euler equations,

respectively, for a perfect fluid.

To summarize, we have seen that General Relativity theory suitably recovers

the classical Newtonian description of gravity and fluid dynamics in the limit of

weak fields and slow motions. In carrying out this limit, we found both a way to

represent Einstein’s constant κ in terms of Newton’s constant G and an alternative

justification for energy-momentum conservation: T µν is divergence-free, ensuring

that both the continuity and Euler equations are recovered in the context of a weak

gravitational field and a non-relativistic perfect fluid.
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Chapter 3

Standard Cosmological Model

Paraphrasing R. Rosenfeld in his paper A Cosmologia [78], published in 2005, one

hundred years after Einstein’s miraculous year and also decreed the world year

of physics, “Cosmology is the science that studies the structure, evolution, and

composition of the universe: science is the method for developing and testing models,

structure concerns all of issues involved in the form and organization of matter in

the universe, evolution argues about the different phases that the universe has gone

through, and composition is what the universe is made of”.

Modern cosmology is based on GR plus the cosmological principle (CP) and is

supported by three observational pillars: (i) Hubble’s law describing the expanding

universe; (ii) big bang nucleosynthesis (BBN) explaining the present abundances of

light elements; and (iii) the cosmic microwave background (CMB), thermal radiation

left over from the first few hundred thousand years, . In this picture, the spacetime

geometry is described by the Robertson-Walker (RW) metric and the dynamics of

the universe is governed by the Friedmann equations. These elements, along with

particle theory and inflation, result in the Friedmann-Lemâıtre-Roberton-Walker

(FLRW) cosmology, also referred to as the Hot Big Bang (HBB) model.

The CP states that at large enough scales the universe is nearly homogeneous

and isotropic. Homogeneous means that it is symmetric under spatial translations

(i.e., there are no privileged points), whereas isotropic means that it is symmetric

under rotations (i.e., there are no privileged directions) [79–83]. The transition to

homogeneity is observed at scales RH ≳ 100 Mpc [84–86] or θH ≳ 15◦ [62, 87]. This

is often verified through LSS observations. Figure 3.1, which corresponds to the

galaxy map of the universe constructed by the Sloan Digital Sky Survey (SDSS),

provides important datasets to confirm the validity of the CP.

In this chapter, we shall discuss the most relevant aspects of standard HBB

cosmology, including its three observational pillars, the background and pertubative

dynamics, structure formation, the initial conditions as set up by inflation, and the

current status of observations.
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Figure 3.1: Map of the universe as seen by the SDSS. Each point represents a galaxy,
with color indicating the g − r color of that galaxy. Credit: M. Blanton and SDSS.
Image available at https://www.sdss4.org/science/orangepie/.

3.1 Expanding universe

The expansion of the universe is a purely cosmological effect, characterized by the

increase in physical distance between gravitationally unbound parts of the observed

universe over time, while the objects involved remain approximately fixed in their

comoving positions. It is worth noting that this expansion of space is not observed

in system such as the Solar System, inside the galaxies, or even throughout the

galaxy clusters. It turns out that, on these scales, gravity acts in an attractive way,

keeping such systems bound and stable for a very long time until they collapse.

We can picture space as a two-dimensional grid, as in Figure 3.2, which expands

uniformly as time evolves. It is also convenient to describe the expansion effect

by introducing the scale factor a(t), such that 0 ≤ a(t) ≤ 1; at the beginning of

the universe, a(t) → 0, whereas today, a0 ≡ a(t0) ≡ 1. Here and throughout, the

subscript “0” denotes the value of a quantity today. As the grid expands, points on

it maintain their comoving coordinates, so the difference between any two comoving

coordinates remains constant. Nevertheless, the physical distance d⃗ is proportional

to the scale factor,

d⃗(t) = a(t)× r⃗ . (3.1)

Since r⃗ does not changes over time, it is called comoving distance. This relation can

also be written in terms of modulus: d(t) = a(t)r, where d ≡ |d⃗| and r ≡ |r⃗|.
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Figure 3.2: Expanding universe. The comoving distance associated with the coor-
dinate position r⃗ remains approximately constant as the grid expands, whereas the
physical distance d⃗ increases over time [79].

By differentiating Eq. (3.1) with respect to time, we obtain the following expres-

sion for the recessional velocities,

v = Hd , (3.2)

where v ≡ ḋ(t) and H = H(t) is defined as

H(t) ≡ ȧ(t)

a(t)
. (3.3)

Here, the dots denote time derivative. Eq. (3.1) is known as the Hubble-Lemâıtre

law, though it is sometimes referred to as the Hubble-Humason law or even the

Hubble-Humason-Lemâıtre law. v(t) are the recessional velocities and H(t) is the

Hubble parameter. As we will see later, H(t) is related to both the energy density

and the spatial curvature of the universe through the Friedmann equations.

For relatively nearby galaxies, Hubble’s law can be approximated by

v ≃ H0d , (3.4)

where H0 ≡ H(t0) is the Hubble constant, which measures the current expansion

rate of the universe. Present measurements of H0 are parameterized by h via

H0 = 100h km s−1Mpc−1 . (3.5)

The inverse of the Hubble constant gives the current time scale of the universe,

t0 ∼ H−1
0 . Based on the standard flat-ΛCDM cosmological model, the best estimate

of the universe age is known to be approximately 13.8Gyr [88].
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Figure 3.3: Nearby Hubble diagram for galaxies with SBF (blue) and Cepheid (red)
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The most direct evidence we have pointing to a dynamic expanding universe is the

Hubble diagram. E. Hubble [90] was the first to observe that distant nebulae move

away from us with recessional velocities proportional to their respective distances,

and elaborated the first v×d diagram. Such diagram has been refined since Hubble’s

time due to new, increasingly deep, and accurate observations. In Figure 3.3, we

show a current version of the Hubble diagram, constructed for galaxies with surface

brightness fluctuation (SBF) and Cepheid distance measurements (see Ref. [89] for

more details). As we can see, the recessional velocities are approximately a linear

function of the physical distance, allowing Eq. (3.4) to be used quite safely for nearby

galaxies.

The late-time local universe is not the only way in order to measure the Hubble

constant. Current measurements of H0 arise from both late-time and early-time

observations, which can be classified as model-dependent or model-independent.

Model-dependent measurements assume a standard flat-ΛCDM cosmology and cover

both late-time (BAO) and early-time (CMB and lensing) observations. In con-

trast, model-independent measurements are essentially late-universe observations

(e.g., SNe, QSOs, GWs, GL, masers, FRBs, among others). However, there is a

known statistical tension between these two methods of determining the universe’s

current expansion rate, H0, which can reach up to ∼ 4σ − 6σ, depending on the

data sets utilized for comparison [91]. This tension is known as the Hubble (or H0)

tension and is recognized through the two main measurements:
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Figure 3.4: Evolution of Hubble constant measurements from 2001 to 2022 using the
local distance ladder (blue) and CMB (red) observations. The local distance ladder is
primarily calibrated using Cepheids, as in HST-KP [92], CHP [93], and SH0ES [94–
100]. In contrast, WMAP [101–105], Planck [88, 106, 107], and ACT [108] perform
indirect measurements based on the ΛCDM model using CMB data. Table A.1
provides more details about each measurement in this plot.

• HSH0ES
0 = 73.04± 1.04 km s−1 Mpc−1, from Riess et al. (2022) [100]; and

• HPlanck
0 = 67.36± 0.54 km s−1 Mpc−1, from Planck Collaboration (2020) [88].

SH0ES measurement is based on local Cepheid–SN Ia distance ladder, whereas

Planck measurements consider CMB data and assumes the ΛCDM cosmological

model. These measurements represent a 5σ statistical tension.

A comprehensive list of H0 measurements is available in Ref. [109], along with

several pertinent details. The authors of this compilation have considered 216 mea-

surements taken between 2012, when a tension tendency can be noticed (see Fig-

ure 3.4), to 2022. Of these, 107 measurements are based on the ΛCDM model, while

109 are model-independent.

In Figure 3.4, we show the history evolution of the Hubble tension in light of the

distance ladder (Cepheid-SN Ia) and CMB estimators since 2001. As we can see,

these measurements agreed up until 2011/2012. However, between 2007 and 2014,

we verify a substantial decrease in the H0 value as measured through the CMB

observations, while it remains approximately constant for the local distance ladder

Cepheid-SNe Ia observations. Due to the significant progress made by the collabora-

tions, H0 measurements have gotten more precise and accurate, with corresponding

uncertainties getting fewer and lower. As a result, the Hubble tension was confirmed

in 2020 mainly through the SH0ES and Planck results. The H0 values used in this

plot are summarized and referred to in Table A.1.
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27



Figure 3.5 summarizes 50 recent H0 measurements taken from 2020 onwards,

spanning several cosmological probes that cover both the early and late universe.

Table A.2 contains details on these measurements, including year, value, method,

author, and reference. We then have divided the measurements between those that

assume a flat-ΛCDM cosmology and those that are model-independent. we include

early-time observations (CMB, lensing, and BBN), late-time observations (BAO),

and combined observations. In contrast, model-independent measurements consist

only late-time observations (SNe Ia, SNe II, GWs, GL, FRBs, masers, and QSO

lensing). Notably, there is a significant statistical disagreement between the ΛCDM-

based data and model-independent observations, which reach up to ∼ 4σ − 6σ.

The Hubble tension should not be so surprising, given the number of systematic

errors that still persist in the measurements. As a matter of fact, there have always

been unresolved tensions between various measurements of the current Hubble rate

H0 [110, 111]. Either way, the Hubble tension may indicate either that our present

distance calibrations need to be reevaluated or that a novel physics that may explain

the early universe that is not included in the ΛCDM model is emerging. As a result,

various scenarios beyond standard model have been explored to solve, or at least

attenuate, this tension (see Refs. [112–115] for a review of solutions).

3.2 Primordial nucleosynthesis

Primordial nucleosynthesis, also known as big bang nucleosynthesis (BBN), refers

to the synthesis of light elements that took place seconds after the origin of the

universe, when its temperature cooled to 1MeV, and lasted for approximately a

dozen minutes. At that time, the components of the cosmic plasma included:

• relativistic particles in equilibrium: photons (γ), electrons (e−);

• decoupled relativistic particles: neutrinos (ν); and

• non-relativistic particles: baryons (b).

According to the HBB model, the early stages of the universe likely resembled a

highly compressed neutron plasma, which degraded into these particles as cosmic

expansion reduced their temperature and pressure. The remaining neutrons were

then captured by the freshly generated protons to form deuterium nuclei, and sub-

sequent neutron capture produced increasingly heavier nuclei, leading to the present

abundances of light elements. This essentially summarizes the standard BBN sce-

nario. See Ref. [116] for reviewing this topic.
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Figure 3.6: (a) Nuclear network of the most important chain reactions in BBN. The
network up to 7Be, corresponding to reactions (3.7) to (3.13), is shown in blue color;
(b) Evolution of light element abundances over time [117].

In the standard BBN, the abundances of light nuclei are usually parameterized

by the baryon-to-photon ratio, defined as

ηbγ ≡
Nb

Nγ

= 6.0× 10−10

(
Ωbh

2

0.022

)
. (3.6)

Current observations determine Ωbh
2 ≈ 0.0224, which corresponds to the universe

being composed of approximately 4% of baryons and ηbγ ≈ 6.0 × 10−9 [88]. Thus,

we conclude that there must have been far fewer baryons than relativistic particles

during the first moments of the universe.

At temperatures T ≳ 0.1MeV, no light nuclei are formed, so only free protons

and neutrons existed at this time. Below this temperature, light nuclei are formed

primarily via the following nuclear chain reactions:

n ↔ 1H+ e− + ν̄ (3.7)

1H+ n ↔ D+ γ (3.8)

D + 1H ↔ 3H+ γ (3.9)

D + D ↔ 3He + n (3.10)

D + 3H ↔ 4He + γ (3.11)

3H+ 4He ↔ 7Li + γ (3.12)

3He + 4He ↔ 7Be + γ (3.13)

As can we see, stable nuclei of hydrogen-1 (1H), deuterium (D), helium-3 (3He),
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Figure 3.7: Dependence of 4He (top), 4He (middle-top), D (middle-bottom), and 7Li
(bottom) on ηbγ, along with Planck constraints (gray narrow rectangle) [117].

helium-4 (4He), lithium-7 (7Li), and the unstable isotopes tritium (3H) and

beryllium-7 (7Be), were created during this process.

As expected, many other nuclear reactions that take place during primordial

nucleosynthesis can also produce light nuclei. Out of these hundreds of reactions,

the most important ones are shown in Figure 3.6(a). Furthermore, the equations

governing this process are very difficult to address analytically. Of course, there

are some procedures that involve good approximations. However, the most accurate

way to do this and compare results to observations is numerical, using computational

codes. As examples, we have the public codes NUC123 [118], PArthENoPE [119,

120], PRIMAT [117], and alterBBN [121, 122]. The last one even allows us to

estimate light element abundances in alternative cosmological models. Figure 3.6(b)

details the prediction for light abundances in base-ΛCDM using the PRIMAT code.

Figure 3.7 compares the key abundances with observations from Planck satellite.

Except for the primordial lithium-7, all other abundances are in agreement with

observations:

• YP ≡ 4NHe/Nb = 0.246± 0.035 [88],

• [D/H]× 105 = 2.527± 0.030 [123],

• [3He/H]× 105 = 1.1± 0.2 [124], and

• [7Li/H]× 1010 = 1.58+0.35
−0.28 [125].
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The predicted value for the 7Li abundance, [7Li/H] × 1010 = 5.623 ± 0.247 [117],

is around three times the measured value, [7Li/H] × 1010 = 1.58+0.35
−0.28 [125]. This

disagreement is known as the lithium problem and can be addressed in three ways:

(i) astrophysical, i.e., stars destroy lithium after BBN; (ii) nuclear, i.e., reactions

destroy lithium during BBN; or (iii) cosmological, i.e., a new physics beyond the

standard model is responsible for destroying 7Li. For a thorough analysis on this

subject, consult Refs. [126, 127].

3.3 Cosmic Microwave Background

The cosmic microwave background is a blackbody radiation that originated from the

interactions between photons and free electrons in the primordial universe, which

reached very low rates when the universe was approximately 380,000 years old.

According to the standard model, at temperatures T ≳ 1 eV, photons were tightly

coupled to the electrons via Compton scattering, which in turn strongly interacted

with protons via Coulomb scattering. When the temperature dropped below 0.3 eV,

nuclei and electrons combined to form the first neutral atoms (as the BBN previously

discussed) and the density of free electrons sharply decreased. As a consequence,

the photon mean free path increased rapidly, eventually reaching a length at which

interactions with baryonic matter became nearly nonexistent around T = 0.25 eV.

This marks the final effective photon-electron interaction, known as the surface of

last scattering (LS). From that point on, photons have been traveling freely through

space being observed today as the CMB radiation. Thus, the CMB offers a unique

window for exploring the primordial features of the universe [128–134].

At sufficiently early times, the rapid collisions between photons and free electrons

kept radiation in thermal equilibrium with the hot, dense matter. Thus, the CMB

photons at frequency between ν and ν + dν, at temperature T , should present a

blackbody spectrum whose number density NT is given by

NT (ν) dν =
8πν2/c3

exp (2πℏν/kBT )− 1
dν . (3.14)

Here, ℏ is the reduced Planck’s constant and kB is the Boltzmann’s constant. Let us

now supposes that the last scattering occurred at time tLS, and that no interactions

between photons and free electrons occurred thereafter. Because the space expands,

its volume increases proportionally to a3(t) and the photon frequencies are redshifted

as ν → ν [a(t)/a(tLS)]. Consequently, at any time t, we should have

N (ν, t) dν =
8πν2/c3

exp [2πℏν/kBT (t)]− 1
dν = NT (t)(ν) dν , (3.15)
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Figure 3.8: CMB flux measurements vs. frequency, along with expected blackbody
curves for three distinct temperature values: T0 = 2K (yelow), T0 = 2.725K (green),
and T0 = 4K (pink). As shown, the data indicate an almost perfect blackbody at
the current temperature T0 ≃ 2.725K [135].

where

T (t) =

[
a(tLS)

a(t)

]
T (tLS) . (3.16)

In other words, the blackbody shape of the CMB spectrum was preserved even after

the last scattering, though with a redshifted temperature, as given by Eq. (3.16).

The CMB blackbody spectrum at the current temperature T0 = 2.725± 0.001K

was confirmed in the 1990s by the FIRAS and DMR instruments on board the

COBE telescope [136], at 95% CL [137]. However, COBE/FIRAS and COBE/DMR

were not the end of the history, since they only made measurements in a small

range of wavelengths around the Planckian peak. In order to cover the remaining

low and very high frequencies, more ground-based, balloon-borne, and rocket-borne

experiments were supplied. Figure 3.8 shows the fit of COBE/FIRAS, COBE/DMR,

balloons, ground, cyanogen (CN), and COBRA rocket measurements to a Planckian

curve confirming a precisely blackbody radiation at T0 ≃ 2.725K [135]. A number

of measurements of the CMB frequency spectrum derived from various observations

are listed in Ref. [138].

The COBE satellite not only measured the blackbody spectrum of the CMB but

also discovered small fluctuations in its temperature spatial distribution of around

10−5 [139], essential for LSS formation. These fluctuations were further investigated

by COBE’s successor, the WMAP satellite, and are currently being studied by the

Planck satellite. WMAP produced CMB maps with better resolution than COBE

and provided measurements with better accuracy and precision, confirming, along

with BOOMERANG [140] and MAXIMA [141] experiments, a flat-ΛCDM universe

and a primordial phase of approximately slow-roll single-field inflation [142]. The
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Figure 3.9: CMB temperature fluctuations map as seen by NASA’s WMAP (lower
left half) and by its successor ESA’s Planck satellite (upper right half). WMAP
represented a major advance in observational cosmology revealing in great detail
the inhomogeneities of the oldest radiation background in the universe, but the
Planck satellite offers even greater resolution and sensitivity, thus, providing the
most accurate image to date of the CMB. Credit: NASA/WMAP Science Team;
ESA and Planck Collaboration.
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Planck telescope, in turn, has produced CMB maps even better than WMAP, with

an impressively higher resolution than its predecessor, carried out very improved

measurements with exceedingly small error bars, and placed even tighter constraints

on cosmological parameters. Figure 3.9 shows the CMB temperature fluctuations

map as seen by NASA’s WMAP and ESA’s Planck satellite.

According to the standard model, the CMB fluctuations were generated from the

initial conditions set up after the primordial inflationary epoch, when T ∼ 1014GeV.

Approximately 10−33 s after the Big Bang, the energy density was briefly dominated

by a slowly-rolling scalar field known as the inflaton. Because the inflaton has neg-

ative pressure, the scale factor – i.e., the length scales of the universe – was inflated

by a factor of ∼ 1040, as in a quasi-de Sitter expansion. Quantum fluctuations in

the inflaton were stretched beyond the Hubble horizon during such superluminal

expansion and frozen. In a very simplified view, upon returning within the horizon,

such fluctuations were converted into the CMB temperature fluctuations observed

today. Under the assumption that there were no interactions of the inflaton with

any other scalar fields in the standard inflationary scenario, the CMB fluctuations

are expected to be described by an approximately Gaussian field [143–146].

Let T (n̂) ≡ T0 [1 + Θ (n̂)] be the measured CMB temperature in a direction n̂ in

the sky, where T0 is the average CMB temperature today and Θ (n̂) ≡ ∆T (n̂) /T0

is the fractional temperature fluctuation. The comparison between temperatures at

two distinct points, n̂ and n̂′, is made using the two-point correlation function [79],

C (θ) = ⟨Θ(n̂)Θ (n̂′)⟩ , (3.17)

where θ ≡ n̂ · n̂′ and the angle brackets denote an average over an ensemble of

universes. As we observe fluctuations on the spherical surface of last scattering, it

is convenient to expand the temperature field in spherical harmonics

Θ (n̂) =
∑
lm

ΘlmYlm (n̂) , (3.18)

where Θlm is called the multipole moments and Ylm are the spherical harmonics,

also depending only on the direction n̂.

For a statistically isotropic fluctuation field, the ensemble average is determined

by the angular power spectrum Cl through the relation

⟨ΘlmΘ
∗
l′m′⟩ = δll′δmm′Cl . (3.19)

The angular power spectrum is the Fourier transform of the two-point correlation
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Figure 3.10: Planck 2018 temperature power spectrum. The red dots represent
CMB data from observed temperature fluctuations, while the solid blue curve shows
the best-fitting spectrum based on the ΛCDM model. The lower panel displays the
residuals with respect to this model [88].

function. Indeed, replacing Eq. (3.18) into Eq. (3.17), we obtain

C(θ) =
∑
l

2l + 1

4π
ClPl(cos θ) , (3.20)

where Pl(cos θ) are the Legendre polynomials. Using the orthogonality of Pl(cos θ),

we can write

Cl = 2π

∫ 1

−1

d cos θ C(θ)Pl(cos θ) . (3.21)

Therefore, the information provided in the Cl
′s is exactly the same as in C(θ). The

variance of the temperature anisotropy field is

C(0) =
∑
l

2l + 1

4π
Cl ≈

∫
d ln l

l(l + 1)Cl
2π

(3.22)

The argument in the above integral is related to the CMB power spectrum ∆2
T by

∆2
T ≡ l(l + 1)

2π
ClT

2
0 , (3.23)

which will be independent of l if the fluctuations are scale-invariant. Notice that

∆2
T is the same as Dl in the Planck papers. Figure 3.10 exhibits the theoretical

prediction according to a fiducial flat-ΛCDM model against the Planck 2018 data

for the power spectrum DTT
l , where the superscript TT indicates data derived from

temperature-temperature correlations in the two-point correlation function.
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A very important (possibly the most relevant) feature behind Figure 3.10 is that

it simultaneously incorporates all six major cosmological parameters that define

the standard flat-ΛCDM cosmology, namely: (i) the physical baryon density Ωbh
2,

(ii) the physical cold dark matter density Ωch
2, (iii) the acoustic angular scale at

decoupling θMC, (iv) the optical depth to reionization τre, (v) the spectral amplitude

of the primordial fluctuations As, and (vi) the scalar spectral index ns. Any other

parameter of cosmological interest, so-called secondary parameter (e.g., the current

Hubble rate H0, total matter density Ωm, cosmological constant density ΩΛ, current

age of the universe t0, matter fluctuation amplitude σ8, among others), is derived

using auxiliary data.

3.4 Background dynamics

Up to this point, our discussions have focused only on the physical foundations

and the observational pillars of the standard HBB cosmology. We will continue our

explanation with the dynamic description of the universe according to the usual

Friedmann-Lemâıtre-Robertson-Walker (FLRW) approach.

3.4.1 Cosmological redshift

Prior to the detection of gravitational waves in 2015, all of our knowledge about the

cosmos was primarily derived from the light coming from distant objects. As we

know, light can be understood classically as electromagnetic waves propagating, or,

quantum mechanically, as freely propagating photons. In the expanding universe,

the wavelength of light emitted by a distant source gets stretched, or, equivalently,

the photons lose energy. This phenomenon is known as cosmological redshift, which

can be interpreted as a Doppler effect due to the relative motion between source

and the observer, arising from the expansion of the universe.

Let us consider the situation in which a galaxy A at time t1 emits a light signal

with wavelength λ1, and an observer in another galaxy B at t0 receives it but mea-

sures a wavelength equal to λ0. Since physical lengths are proportional to the scale

factor, we should have
λ0
λ1

=
a(t0)

a(t1)
. (3.24)

An expanding universe, where a(t0) > a(t1), implies an increase in wavelength,

such that λ0 > λ1. In contrast, a contracting space, with a(t0) < a(t1), implies an

decrease in wavelength, i.e., λ0 < λ1.

To quantify the displacement of the spectral lines of a source due to the expansion
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of the universe, let us define the redshift z as

z ≡ λ0 − λ1
λ1

=
v

c
. (3.25)

By replacing Eq. (3.24) into Eq. (3.25), we find for a light-emitting source at t1 and

an observer at t0,

1 + z =
a(t0)

a(t1)
=

1

a(t1)
. (3.26)

The second equality is achieved when setting a(t0) ≡ 1. Analyzing Eq. (3.25), it is

possible to verify only two situations:

(a) when z > 0, or λ0 > λ1, we have a redshift;

(b) when z < 0, or λ0 < λ1, we have a blueshift.

From Eq. (3.26), we conclude that the observed spectral lines of a distant source are

redshifted throughout the cosmic expansion. It was the observation of this effect in

the spectra of the galaxies studied by E. Hubble and other researchers that allowed

the astronomer to measure the recessional velocities and thus discover the expansion

of the universe.

Let us now see how this relates to the Hubble law. It turns out we can expand

the scale factor a(t1) in the following power series:

a(t1) = a(t0)
[
1 + (t1 − t0)H0 −

q0
2
(t1 − t0)

2H2
0 + . . .

]
. (3.27)

For nearby sources for which |(t1 − t0)H0| ≪ 1, we can truncate the series in linear

order, obtaining z ≃ H0(t0 − t1). Since (t0 − t1) multiplied by the speed of light c is

simply the physical distance d, we find that

cz ≃ H0d , (3.28)

which is the nearby Hubble law expressed in terms of the observable redshift z.

By comparing Eq. (3.28) to Eq. (3.25), we have now another way to define nearby

sources comprising the local universe. That is cz ≪ v, or, equivalently, z ≪ v/c.

Hence, considering physical distances as d ≲ 400Mpc and H0 ∼ 70 km s−1Mpc−1,

the local universe corresponds to z ≲ 0.1. The definition of the local universe is

not a consensus in the literature, since some authors report it as being given by

z < 0.05 [147], z < 0.1 [148, 149], or even z < 0.2 [150–152].

As we have seen, the observable redshift is a monotonic function of time in

the Hubble expanding universe, with with z = 0 corresponding to the present age

and z → ∞ to the initial Big Bang singularity. This allows us to organize events

in the universe’s timeline by assigning a specific redshift value to each of them.
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For example, primordial inflation occurred at z ∼ 1026, BBN at z ∼ 108, radiation-

matter equality at z ≃ 3400, recombination at z ≃ 1400, last scattering and photons

decoupling at z ≃ 1100, reionization between 20 ≳ z ≳ 6, and matter-DE equality

at z ∼ 0.326 [79–81].

3.4.2 Cosmological distances

Measuring distances in cosmology is a truly challenging task, since many issues

can be involved, such as environmental pollution, incomplete astrophysical models,

dependence on the cosmological model for very distant sources, limitations of current

instruments, uncontrolled effects, among others. Fortunately, there are some ways

in which we can do this appropriately.

Initially, two forms of cosmological distances have already been mentioned when

we talk about the Hubble expansion: the comoving distance r and the physical

distance d(t). While the first one is related to the coordinate position of an object,

remained constant throughout the expansion, the second one depends on cosmic

time t as the physical space between the bodies is being stretched. Such distances

are connected through the scale factor a(t) via Eq. (3.1).

Other three important distances are the Hubble sphere rH(t), the particle horizon

rp(t), and the sound horizon rs(t). As we have written explicitly, these are measures

that evolve over time. Ultimately, the Hubble sphere is the radius where objects

receding from the origin according to Hubble’s law are instantaneously receding at

the speed of light, the particle horizon establishes the causal limit of the structures

in the universe, and the sound horizon corresponds to the preferred distance for the

structure formation in the universe [153].

Nevertheless, none of these distance measurements assist astrophysicists and

astronomers in determining the distance to objects in the sky using their telescopes.

For this purpose, two additional distance estimators were developed. The first we

are talking about is the luminosity distance dL(z), determined from the measured

flux FL(z), or luminosity L, due to a bright source at redshift z. The second

involves the measured angular size δθA and physical size sA of an object at redshift

z, which can be used to determine its angular diameter distance, dA(z). It is worth

mentioning that although these estimators assume relatively simple forms, they

carry with them all the astrophysical difficulties involved in obtaining, for example,

the correct luminosity of distant sources. In addition, any physical distance to light

sources outside the local universe is significantly affected by the nonlinear terms in

Eq. (3.27), specifically the acceleration term q(t) and beyond, and by the curvature

of the spatial section, leading to a dependence on the cosmological model.
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Hubble sphere

As the Hubble law states that distant sources are moving away with a recessional

velocity proportional to the distance, there must be a distance in which the bodies

have v = c. This distance is the Hubble sphere, defined by

rH(t) ≡
c

H(t)
. (3.29)

In the literature on the inflationary universe, it is common to refer to rH as the

horizon. It is also often stated to be the boundary beyond which causal influences

cannot propagate, due to the special relativity constraint that no cause can

propagate faster than the speed of light [153]. However, both claims are misleading.

First, in the context of inflation, the Hubble sphere is not a true horizon because

structures that have crossed it can reenter after inflation ends; the horizon they

reenter is called the revised horizon, determined by the distance that light can

travel in a non-inflationary FLRW universe. Second, although photons are in the

superluminal region (and thus recede from us beyond an appropriate distance), the

Hubble sphere also recedes. As long as the Hubble sphere recedes faster than the

photons immediately outside it, those photons eventually enter a subluminal region

and approach us. See Ref. [154] for a detailed discussion of these misconceptions.

Particle horizon

Because the speed of light and the age of universe have finite values, there exists a

particle horizon rp(t) determining the maximum distance from which we can retrieve

information from the past. A photon emitted at the Big Bang would have traveled

the greatest possible distance to reach observer at time t, given by

∆τ ≡ τ − τi =

∫ t

ti

c dt

a(t)
, (3.30)

where the subscript i corresponds to the initial Big Bang time, and ∆τ is called

the comoving particle horizon, which defines a causality limit for structures in the

universe. The physical particle horizon is therefore given by

rp(t) = a(t)∆τ . (3.31)

Although rH(t) and rp(t) are the same for most of the history of the universe, the

Hubble sphere and particle horizon are conceptually distinct. For example, during

primordial inflation, these distances differ significantly: in inflation, rH ≈ constant.

while rp ∝ exp (Ht).
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Sound horizon

The early universe was susceptible to baryonic acoustic oscillations due to the

dark matter pits affecting the frequency of photons, and then the high interaction

rates in the photon-electron-baryon (or simply photon-baryon) fluid. These oscilla-

tions propagated throughout the universe at the speed of sound cs, defined by

cs ≡
[
3

(
1 +

3ρb
4ργ

)]−1/2

. (3.32)

Here, the subscripts b and γ stand for baryons and photons, respectively. Thus, the

maximum distance covered by baryonic acoustic oscillations before photon-baryon

decoupling is the sound horizon, which is given by

rs(t) = a(t)

∫ t∗

tB

cs dt

a(t)
, (3.33)

where tB denotes the onset of baryonic acoustic oscillations, and t∗ represents the

time of decoupling. After decoupling, the baryonic acoustic oscillations are frozen,

allowing structures to grow and cluster more likely along spherical surfaces with a

radius equal to the sound horizon.

Luminosity distance

So far, observing the emitted light by celestial bodies is the most effective method

in order to explore the universe, in particular, for measuring distances. In the

Hubble expanding universe, spherically symmetric and isotropic light source with

known luminosity L (i.e., a standard candle) at redshift z has an observed (at z = 0)

luminosity flux FL(z) given by

FL(z) =
L

4πd2L(z)
, (3.34)

where dL(z) is the luminosity distance, defined as

dL(z) ≡ X (r)(1 + z) . (3.35)

Here, X (r) ≡
∫ r
0
dr̃/
√

1−Kr̃2/R2
0
1 is the conformal distance in a universe with

constant curvature given by K, and current physical curvature scale denoted by R0.

Notice that assuming a spatially flat three-section for which K/R2
0 = 0, the quantity

X (r) is simply the radial comoving distance r.

1This integral is obtained assuming a null geodesic in the Robertson-Walker metric, which are
the paths followed by photons in a statistically homogeneous and isotropic universe [65, 83, 155,
156]. In the part that follows, we will talk about the Robert-Walker metric.
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For galaxies in the local universe [157, 158], the Hubble’s law can be written as

cz = H0dL. This formula has the advantage of having only observational quantities.

Finally, dL(z) can be given in terms of apparent magnitude mB(z) by

dL(z) = 10
mB(z)−MB

5
+1 , (3.36)

where MB is the absolute magnitude, defined as the apparent magnitude that the

object would have if it were viewed from a distance of exactly 10 parsecs (without

extinction or dimming). In this case, dL is given in parsec.

Angular diameter distance

A classic way to determine distances in astronomy is measuring the angle δθA

subtended by an object of known physical size sA (i.e., a standard ruler). For distant

objects so that δθA ≪ 1, we can write

dA =
sA
δθA

. (3.37)

Relating this to the expansion of the universe, the angular diameter distance, defined

as dA(t) ≡ a(t)X (r), gives

dA(z) =
X (r)

1 + z
. (3.38)

Combining now this relation with Eq. (3.35), we get the Etherington’s reciprocity

theorem, also known as the distance duality relation [159],

dA(z) =
dL(z)

(1 + z)2
. (3.39)

This relation is completely general, valid for any cosmological scenario based on

a Riemannian (and pseudo-Riemannian) geometry. The only requirements for its

validity are that the source and observer are connected via null geodesics, and that

the number of photons is conserved.

3.4.3 Robertson-Walker metric

The statistical homogeneity and isotropy postulated by the cosmological principle

reduce the form of the metric tensor to a restricted family of spacetimes known

as the Robertson-Walker (RW) metric, in a universe filled with various forms of

matter, energy and curvature. Spatial homogeneity implies that every point in

the spacetime web is equivalent, while spatial isotropy asserts that there are no

privileged directions around any point. Mathematically, homogeneity represents

symmetry under translations, while isotropy stands for symmetry under rotations.
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Since the universe is not static, we are looking for a metric that is homogeneous

and isotropic in space, but not in time. In GR, this translates into the statement that

the universe can be foliated into spacelike slices such that each slice is homogeneous

and isotropic. Therefore, we search for a metric as

ds2 = −c2dt2 + Fijdx
idxj , (3.40)

where Fij = Fij(t, x
i). Considering now two arbitrary slices t = t1 and t = t2 > t1,

the CP states that a triangle formed by three particles in t1 has its shape maintained

when it reaches t2. Hence,

Fij = a2(t)γij(x
i) , (3.41)

where the purely spatial metric tensor, γij, obeys

Rijkl =
K

R2
0

(γikγjl − γilγjk) , (3.42)

and thus

Rij = γklRkijl =
2Kγij
R2

0

. (3.43)

Here, K/R2
0 represents the Gaussian curvature of the spatial three-section; the CP

requires that K be a constant. Metrics that satisfy Eq. (3.42), and hence Eq. (3.43),

are referred to as maximally symmetric metrics.

Since the spatial three-section is spherically symmetric, the purely spatial metric

takes the form

γijdx
idxj = eQdr2 + r2

(
dθ2 + sin2 θdϕ2

)
, (3.44)

where Q = Q(r). By solving Eqs. (3.43), it is straightforward to show that

Q(r) = − ln

(
1− Kr2

R2
0

)
. (3.45)

Therefore, the metric satisfying the requirements set out by the spatial homogeneity

and isotropy follows from the line element

ds2 = −c2dt2 + a2(t)

[
dr2

1− Kr2

R2
0

+ r2
(
dθ2 + sin2 θ dϕ2

)]
, (3.46)

known as the Robertson-Walker line element or Robertson-Walker metric. Notice

that the substitutions

a→ a√
|K|

, r →
√
|K| r , K → K

|K| , (3.47)
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Figure 3.11: Geometry of the universe. The first case shows a spherical curvature
(K > 0), indicating a closed universe. The second case displays a hyperbolic cur-
vature (K < 0), indicating an open universe. The third case is the flat, Euclidean
universe with K = 0. The geometry of the universe is related to the total energy
density, Ω0, and determines whether the universe will expand forever or eventually
collapse. Credit: NASA/WMAP Science Team.

for K ̸= 0, leave Eq. (3.46) invariant. Therefore, the actually relevant curvature

parameter is K → K/|K|, giving rise to the three cases of interest |K| = 0 or 1.

• K = +1 corresponds to a spherical geometry,

• K = −1 corresponds to a hyperbolic geometry,

• K = 0 corresponds to a flat (or Euclidean) geometry.

Figure 3.11 illustrates a 2D representation for each of the geometries described here.

It is possible to notice that whereas a triangle drawn on a flat surface has the sum

of its internal angles equal to 180°, on spherical surface it is greater than 180° and
in hyperbolic surface it is less than 180°.

The propagation of signals at the speed of light c can be understood within the

context of a homogeneous and isotropic universe. As massless particles like photons

follow null geodesics (ds2 = 0), Eq. (3.46) yields c dt/a(t) = ± dr/
√
1−Kr2/R2

0,

where the “+” and “−” signs correspond to the emission and observation of a photon,

respectively. Thus, for a photon emitted at any time t at a distance r and observed

at time t0 at the origin r = 0, we shall have∫ t0

t

c dt

a(t)
= −

∫ 0

r

dr̃√
1−Kr̃2/R2

0

≡ X (r) . (3.48)
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The solution of this equation corresponds to the following three cases:

X (r) =


R0√
|K|

sin−1
(√

|K|r2
R2

0

)
if K > 0

R0√
|K|

sinh−1
(√

|K|r2
R2

0

)
if K < 0

r if K = 0

. (3.49)

In a flat universe, the conformal distance to an object X (r) is just its coordinate

distance r. On the other hand, because sin−1 (y) > y and sinh−1 (y) < y in a closed

universe, the conformal distance to an object is greater than its coordinate distance,

whereas in an open universe it is less than its coordinate distance. Current combined

analysis of data come from CMB, lensing, BAO, and SNe Ia observations point out

to a essentially flat universe [88, 160], as predicted by cosmic inflation.

3.4.4 Friedmann equations

Thus far, we have separately discussed the main ingredients for constructing the

HBB standard cosmology, namely: (i) the GR theory describing the gravitational

field, and (ii) the cosmological principle, which leads to the perfect fluid description

for the material distribution in the universe and the RW metric. We will now

combine these ingredients into a cosmological recipe in order to derive the motion

equations that describe the evolution of the universe.

By replacing both the perfect fluid energy-moment tensor in Eq. (2.37), setting

vacuum energy to vanish (T vac
µν = 0), and RW metric in Eq. (3.46) into Einstein’s

equations (2.49), we obtain the Friedmann equations (in units as c = 1),

H2 = κ2 (ρr + ρm + ρK) (3.50)

and

2Ḣ + 3H2 = −κ2 (Pr + Pm + PK) , (3.51)

where (recall) κ2 ≡ 8πG is the Einstein constant. We have defined the curvature

density2 as ρK ≡ −3K/κ2a2. For the time being, we have disregard any contribution

from a cosmological constant. Since all radiation (r), matter (m), and curvature (K)

fields behave as simple barotropic fluids, the pressures Pi ≡ Pi(ρi) can be described

through the equation of state

Pi = wiρi , wi =


1/3, for radiation

0, for matter

−1/3, for curvature

. (3.52)

2Beware! Although it is possible to describe curvature as a perfect fluid with wK = −1/3, this
is misleading. In fact, curvature belongs on the left-hand side of the field equations.
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The conservation of the energy-momentum states that each of the material or

curvature components must satisfy the fluid equation

ρ̇i + 3H(ρi + Pi) = 0 . (3.53)

Since each of the components are conserved separately, the sum also vanish, i.e.,∑
i [ρ̇i + 3H(ρi + Pi)] = 0, where i = (r,m,K). Using Eq. (3.52) to solve Eq. (3.53),

we obtain

ρi(a) = ρi,0 a
−3 exp

[
−3

∫ a

a0

wi(ã)dã

ã

]
, (3.54)

where ρi,0 ≡ ρi(t0) is the energy density of the ith material component at the present

time t = t0. If the EoS parameter wi is constant, then

ρi(a) = ρi,0 a
−3(1+wi) . (3.55)

As a result, we shall have three distinct cases: (i) radiation, for which wr = 1/3,

thus evolving as ρr = ρr,0 a
−4; (ii) non-relativistic matter, for which wm = 0, thus

evolving as ρm = ρm,0 a
−3; and (iii) curvature, for which wK = −1/3, thus evolving

as ρK = ρK,0 a
−2. These solutions correspond to single-component universes, so a

more realistic picture of nature involves a mixture of radiation, matter, curvature,

and even exotic dark energy, which we will discuss later.

The Friedmann equation (3.50) can be rewritten in a more convenient form if

we set the critical value of the total density such that the universe is spatially flat

today. Such a critical density is thus defined as

ρcr ≡
H2

0

κ2
=

3H2
0

8πG
. (3.56)

In terms of the normalized Hubble constant, h, the critical density can be expressed

as ρcr = 1.9 × 10−29 h2 g/cm3. It is used in order to define the physical density, or

density parameter,

Ωi(a) ≡
ρi(a)

ρcr
. (3.57)

In terms of this parameter, the Friedmann equation is then given as

H2(a) = H2
0

(
Ωr,0

a4
+

Ωm,0

a3
+

ΩK,0

a2

)
, (3.58)

where we have set Ωi,0 ≡ Ωi(a0). This form of expressing the Friedmann equation

is particularly appropriate, since Ωi,0 is often observed directly and takes values in

the range 0 ≤ Ωi,0 ≤ 1.

Finally, Eqs. (3.50), (3.51), and (3.53) can be combined to yield the acceleration
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equation, also known as the Raychaudhuri equation,

ä

a
= −κ

2

6

∑
M=r,m

(ρM + 3PM) , (3.59)

where the subscript M stands only for radiation and matter. As there is no presence

of curvature term in this equation, we shall always have ä < 0, meaning that the

universe’s expanding velocity is decreasing over time. This makes sense if we consider

that all of conventional forms of matter gravitate towards collapsing.

However, by the end of the 1990s, two different teams of astrophysicists – one

led by S. Perlmutter and the other by B. Schmidt – discovered that the universe is

currently expanding at an accelerated rate, q(t0) < 0 [1, 2]. In the context of GR, we

have seen that this acceleration cannot be explained solely through known conven-

tional energy forms, such non-relativistic matter or radiation. Examining Eq. (3.59),

we conclude that to achieve ä > 0, it is required that ρ + 3P < 0, or, equivalently,

w < −1/3. In other words, the material content driving the acceleration of the

universe must have negative pressure.

3.4.5 Cosmic acceleration

We have seen that in order to explain the current cosmic acceleration in light of

the standard cosmology, based only on GR theory and the CP, it is necessary to

postulate a new form of energy in such a way that ρ + 3P < 0, which require at

least w < 0. Such a exotic component is generically called the dark energy (DE),

having EoS given by

wDE =
PDE

ρDE

. (3.60)

Because the physical nature of DE is unknown, various parameterizations of wDE

have been proposed in the literature (see Refs. [161–163] for reviewing dark energy

models).

The simplest theoretical explanation for the current acceleration is that it origi-

nates from the energy density of the quantum vacuum. We have seen that a positive

cosmological constant, when inserted into the right-hand side of the Einstein equa-

tions, can be interpreted as the contribution of the quantum vacuum from the matter

fields existing in the universe. In this case, we can add the energy density due to

cosmological constant to the total energy density, allowing the Friedmann equation

to be expressed as

H2 = H2
0

(
Ωr,0

a4
+

Ωm,0

a3
+

ΩK,0

a2
+ ΩΛ

)
, (3.61)
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Figure 3.12: Evolution of energy densities in the universe. Radiation dominated the
energy density, ρ, until close to the time of CMB formation. As ρr decreases faster
than ρm, matter became the dominant component afterward. At sufficiently late
times (z ∼ 0.5), the cosmological constant becomes more significant than any other
component [79].

ρ(a) a(t) H(t) Era

∝ a−4 ∝ t1/2 = 1/2t RD
∝ a−3 ∝ t2/3 = 2/3t RD

∝ a0 ∝ eH0
√
ΩΛ t = H0

√
ΩΛ ΛD

Table 3.1: Summary of solutions for a single-component universe.

where

ΩΛ ≡ ρΛ
ρcr

=
Λ

3H2
0

. (3.62)

Since wΛ = −1, Eq. (3.55) gives us ρΛ = ρΛ,0. Hence, the acceleration condition

translates to ρ+ 3P = 2ρr + ρm − 2ρΛ < 0, implying ρΛ > (2ρr + ρm) /2, where the

matter-energy content now also includes the cosmological constant. This means that

the observed acceleration is achieved as the universe is currently dominated by the

quantum vacuum energy ρΛ. Consequently, the universe must have undergone three

different evolution phases: (i) the radiation-dominated (RD) era, where ρ ∝ a−4 and

a ∝ t1/2; (ii) the matter-dominated (MD) era, where ρ ∝ a−4 and a ∝ t2/3; and (iii)

the current vacuum-dominated (ΛD) era, where ρ ∝ a0 and a ∝ exp
(
H0

√
ΩΛ t

)
.

Figure 3.12 illustrates the evolution of each material contents and the different

phases the universe undergoes. Table 3.1, in turn, summarizes the solutions for

single-component universe.

Since H0 ≡ H(t0), the parentheses in Eq. (3.61) must equal unity, leading to

Ω0 ≡ ΩM,0 + ΩΛ = 1 − ΩK,0, where Ω0 represents the current total density. This
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Figure 3.13: Evolution of the scale factor a(t) for a universe containing only a
mixture of non-relativistic matter and spatial curvature. The fate of the universe
depends on the total amount of matter. If the universe is closed (Ω0 > 1), then it
re-collapses in a Big Crunch, while if it is open (Ω0 < 1), it will expands forever.
The flat case (Ω0 = 1) lies in the intermediate region and also leads to an eternally
expanding universe, although more slowly than in the open case [79].

results in three situations:

• Ω0 > 1, indicating a spherical closed universe;

• Ω0 < 1, indicating a hyperbolic open universe; and

• Ω0 = 1, indicating a Euclidean open universe.

Therefore, the current total amount of matter-energy Ω0 dictates both the spatial

geometry and fate of the universe: closed indicates that the current amount of matter

is sufficient to reverse the expansion and cause the universe to collapse, while open

signifies that Ω0 is not large enough to stop the expansion, resulting in an eternal

expansion of the universe (see Figure 3.13).

3.5 Cosmological perturbations

Thus far, we have treated the universe as a perfectly homogeneous fluid, such that

physical properties like density and pressure depend only on time. However, it was

previously discussed the existence of small fluctuations about 10−5 in the CMB

temperature distribution. These fluctuations are associated with perturbations in

the global distribution of material and play a crucial role in the growth of LSS.

As long as these perturbations remain relatively small, we can analyze them using

linear perturbation theory.
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To describe such an inhomogenous universe, we expand the Einstein equations

order by order in perturbations to both the metric and the stress-energy tensor,{
gµν(η, x

i) = ḡµν(η) + δgµν(η, x
i)

Tµν(η, x
i) = T̄µν(η) + δTµν(η, x

i)
, η ≡

∫
dt

a(t)
, (3.63)

where η is the conformal time. As it is well known, a generic perturbation can be

decomposed into scalar, vector, and tensor modes. Scalars modes are connected to

matter fluctuations, vector modes are responsible for generating primordial magnetic

fields, and tensor modes give rise to gravitational waves. Since these perturbations

are very small, i.e., |δgµν |, |δTµν | ≪ ḡµν , T̄µν , we will discuss only linear perturbations.

Furthermore, we will focus only on the scalar modes, as we are primarily interested

in matter fluctuations, essential for understanding the growth of structures.

3.5.1 Metric perturbations

The basic idea is to consider small perturbations around the flat RW metric [79],

ds2 = a2(η)
[
− (1 + 2Φ) dη2 + 2Bidηdxi + (δij + 2Eij) dxidxj

]
, (3.64)

where we use conformal time η instead of cosmic time t. The functions Φ = Φ (η, xi),

Bi = Bi (η, xi), and Eij = Eij (η, xi) represent scalar, vector, and tensor perturba-

tions, respectively.

Since the perturbations are decoupled at linear order, the scalar-vector-tensor

decomposition allows us to express

Bi = ∂iB +Bi , (3.65)

Eij = Ψδij +

(
∂i∂j −

1

3
δij∇2

)
E +

1

2
(∂iEj + ∂jEi) + Eij . (3.66)

In order to eliminate redundant information in the metric perturbations, we impose

the conditions ∂iBi = ∂iEi = ∂iEij = Ei
i = 0. This leaves 10 metric degrees of

freedom [164, 165]:

• Scalar perturbations: {Φ, B,Ψ, E};

• Vector perturbations: {Bi, Ei};

• Tensor perturbations: {Eij}.
Therefore, by applying the scalar-vector-tensor decomposition and imposing the

necessary constraints, we reduce the number of independent metric perturbations to

10 degrees of freedom. This simplification enables us to isolate the relevant physical

modes for cosmological analysis.
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3.5.2 Fluid perturbations

The most general way to establish perturbations in a perfect fluid, considering a flat

expanding space, is to set [79]

T 0
0 ≡ − (ρ̄+ δρ)

T 0
j ≡

(
ρ̄+ P̄

)
(vj +Bj)

T i0 ≡ −
(
ρ̄+ P̄

)
vi

T ij ≡
(
P̄ + δP

)
δij +Πi

j

, (3.67)

where δρ = δρ(η, xi) represents the matter density fluctuations, δP = δP (η, xi) is the

pressure perturbations, vi = vi(η, xi) are the peculiar velocities, and Πi
j = Πi

j(η, x
i)

is the anisotropic stress.

Similarly to metric perturbations, the scalar-vector-tensor decomposition can be

applied to the matter perturbations, yielding

vi = ∂iv + Vi , (3.68)

Πij =

(
∂i∂j −

1

3
δij∇2

)
Π+

1

2
(∂iΠj + ∂jΠi) + πij . (3.69)

As with metric perturbations, we impose the conditions ∂ivi = ∂iΠij = Πi
i = 0.

Given the wide variety of species in the universe – such as photons (γ), baryons (b),

electrons (e), neutrinos (ν), dark matter (c), etc. – the total stress-energy tensor

is given by the sum Tµν =
∑

a T
a
µν . This implies that δρ =

∑
a δρ

a, δP =
∑

a δP
a,(

ρ̄+ P̄
)
vi =

∑
a

(
ρ̄a + P̄a

)
vai , and Πij =

∑
aΠ

a
ij.

Finally, it is convenient to describe the matter-energy density perturbations in

terms of the dimensionless density contrast, δa(η, x
i) ≡ δρa(η, x

i)/ρ̄a(η). Ultimately,

perturbation theory is valid as long as δa ≪ 1.

3.5.3 Newtonian gauge

When describing perturbations in GR theory, we are implicitly choosing a specific

time slicing of spacetime and defining particular spatial coordinates on these time

slices. A different choice of coordinates can change the values of the perturbation

variables or even introduce fictitious perturbations. Consequently, the metric and

matter perturbations in Eqs. (3.64) and ( 3.67) are not uniquely defined, but depend

on the choice of coordinates, the so-called gauge choice.

In order to address this issue, the gauge-invariant formalism was introduced in

Refs. [166, 167] and later refined in Refs. [164, 168, 169]. It follows then that one

way to avoid the gauge problem is to define specific combinations of the perturba-

tions that remain unchanged under a change of coordinates. In the case of metric
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perturbations, there are the Bardeen variables{
ΦB ≡ Φ +H (B − E ′) + (B − E ′)′

ΨB ≡ −Ψ+ 1
3
∇2E −H(B − E ′)

, (3.70)

whereas for the matter perturbations we have{
δρ

(gi)
a ≡ δρa + ρ̄ ′

a (B − E ′)

δP
(gi)
a ≡ δPa + P̄ ′

a (B − E ′)
. (3.71)

Here, the primes indicate differentiation with respect to conformal time η. Notice

that these are only scalar perturbations, as they are the ones we are interested.

Otherwise, we would also need to find vector-invariant perturbations.

We could proceed by deriving equations for the invariant perturbations defined

in the previous equations. However, we can significantly reduce the manual work

involved by fixing the gauge. The preferred gauge for studying structure formation

is the Newtonian gauge, for which B = E = 0. In this gauge, we then have ΦB ≡ Φ,

ΨB ≡ Ψ, δρ
(gi)
a ≡ δρa, and δP

(gi)
a ≡ δPa. Consequently, the perturbed RW metric in

Eq. (3.64) takes the form

ds2 = a2
[
−(1 + 2Φ)dη2 + (1 + 2Ψ) δijdx

idxj
]
, (3.72)

which is the same as that obtained from the Newtonian limit, where Φ represents

the Newtonian gravitational potential.

3.5.4 Perturbed equations

Once the fluctuations have been characterized, we can derive the fluid equations in

the Newtonian gauge. The energy-momentum conservation, ∇µδT aµν = 0, leads to:

1. The linearized continuity equation (ν = 0):

δ′ = −
(
1 +

P̄

ρ̄

)(
∂ivi − 3Φ′)− 3H

(
δP

δρ
− P̄

ρ̄

)
δ , (3.73)

2. The linearized Euler equation (ν = i):

v′i = −
(
H +

P̄ ′

ρ̄+ P̄

)
vi −

(∂iδP − ∂jΠij)

ρ̄+ P̄
− ∂iΨ . (3.74)

These equations, which describe the evolution of a specific species a (the subscript

has been omitted here to avoid overloading the notation), must be solved together

under appropriate initial conditions.
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Next, the mathematical relations between the perturbations are derived from

the linearized Einstein equations δGν
µ = 8πGδT νµ , yielding

∇2Ψ− 3H (Ψ′ +HΦ) = 4πGa2ρ̄δ , (3.75)

− (Ψ′ +HΦ) = 4πGaδq , (3.76)

Ψ− Φ = 8πGa2Π , (3.77)

Ψ′′ +HΦ′ + 2HΨ′ − 1

3
∇2 (Ψ− Φ) +

(
2H′ +H2

)
Φ = 4πGa2δP , (3.78)

where δq ≡
(
ρ̄+ P̄

)
v represents the momentum density perturbations. Eqs. (3.75)

and (3.76) can be combined to derive the Poisson equation ∇2Ψ = 4πGa2ρ̄δcom,

with ρ̄δcom ≡ ρ̄δ− 3Hδq, where δcom is the comoving density contrast. On the other

hand, if no anisotropic stress is observed (Π = 0), Eq. (3.77) implies that Ψ = Φ,

and Eq. (3.78) simplifies to

Φ′′ + 3HΦ +
(
2H′ +H2

)
Φ = 4πGa2δP . (3.79)

These linearized Einstein equations must be supplemented by the continuity and

Euler equations, leading to a system of coupled differential equations.

3.6 Structure formation

Every structure in the universe essentially grew from the gravitational instability.

Following the initial conditions set by cosmic inflation, cosmological perturbations

were established in the primordial universe and evolved over time according to the

dominant content: first during the RD era, then the MD era, and finally the ΛD

era. These fluctuations consist of overdensity and underdensity regions, initially

on the order of δ ∼ 10−4. The overdensity regions eventually accumulated enough

matter and evolved into galaxies, clusters, superclusters, and so on, whereas the

underdensity regions lost material to the overdensity regions, forming vast voids.

Two counteracting effects were crucial in triggering this matter clustering process:

(i) the background expansion, which tends to drag particles of all species apart, and

(ii) the internal pressure due to highly interacting photons and baryons, causing the

gas to move toward lower pressure regions. Since at very early times the high energy

of the photons prevented baryons from grouping together, a single type of CDM,

which does not interact with light, managed to cluster, forming a cosmic web. Once

photon-baryon interactions dropped enough for gravity to overcome pressure, the

baryons began to accumulate in the DM nodes. This process was further enhanced

when baryons were released from photons influence after decoupling, particularly

taking off during the MD era.
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In order to understand the process of structure formation over time, we need

to distinguish between two separated regimes: super-horizon (k/H ≪ 1) and sub-

horizon (k/H ≫ 1) scales. It is important to note that the horizon referred to here,

specifically the Hubble horizon, is not a horizon in the traditional sense [154]. In

the standard HBB scenario, adiabatic fluctuations were initially frozen outside the

horizon, where no significant dynamics occurred. As the horizon evolved, each per-

turbation mode k crossed the horizon when k = H; some did so during the RD era

(small scales) and others during the MD er (large scales), resulting in the forma-

tion of small and large structures, respectively. Ultimately, the structure formation

process is suppressed in the current ΛD epoch.

3.6.1 Super-horizon (non-)evolution

Following the initial conditions, all perturbations remain frozen outside the Hubble

horizon. This behavior is evident through the analysis of the curvature and comoving

curvature perturbations,

ζ ≡ −Ψ− H
ρ̄′
δρ (3.80)

and

S ≡ Ψ− H
ρ̄+ P̄

δq , (3.81)

respectively. Both curvature perturbations are gauge-invariant. Therefore, the en-

ergy conservation in Eq. (3.73) can be rewritten in terms of ζ as

ζ ′ = −H δPnad

ρ̄+ P̄
−Z , (3.82)

where
Z
H = − k2

3H2

[
ζ +Ψ− k2

H2

2ρ̄

9
(
ρ̄+ P̄

)] . (3.83)

For purely adiabatic perturbations (δPnad = 0) on super-Hubble scales, we find that

ζ ′ ≈ 0, meaning ζ ≈ constant. Since S = −ζ for k/H ≪ 1, we conclude that S is

also nearly constant on super-Hubble scales. As we will see, the initial conditions

established by an inflationary phase are predominantly adiabatic.

3.6.2 Adiabatic perturbations

Simple inflation models predict that primordial fluctuations are adiabatic. This im-

plies that the local state of matter at a given spacetime event (η, xi) in the perturbed

universe corresponds to the background state at a slightly different time, η+δη (xi).

For a given species a, the adiabatic density and pressure perturbations are defined
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as:

δρa
(
η, xi

)
≡ ρ̄a (η + δη)− ρ̄a = ρ̄ ′

aδη , (3.84)

δPa
(
η, xi

)
≡ P̄a (η + δη)− P̄a = P̄ ′

aδη . (3.85)

Since δη is the same for all species, it follows that

δη =
δρa
ρ̄ ′
a

=
δρb
ρ̄ ′
b

,
δPa
P̄a

=
δρa
ρ̄a

. (3.86)

Using ρ̄ ′
a = −3H (1 + wa) ρ̄a, δa ≡ δρa/ρ̄a, and c2s,a ≡ P̄a/ρ̄a, we can express the

relations in Eq. (3.86) as

δa
1 + wa

=
δb

1 + wb
, δPa = c2s,aδρa , (3.87)

where wa and c
2
s,a are the EoS parameter and sound speed for species a, respectively.

Thus, for adiabatic perturbations in a mixture of non-relativistic matter (wm = 0)

and radiation (wr = 1/3), we shall have

δm =
3

4
δr . (3.88)

During the RD era, cs,a is the speed of light, while in the MD era, it is the speed of

sound. Since all δa’s are comparable, the species with the dominant energy density,

ρ̄a, dictates the total density perturbation, δρ ≡∑a ρ̄aδa.

3.6.3 Contrast equation and growth rate

In the process of structure formation, the evolution of initial adiabatic perturbations

is governed by the balance between gravitational collapse, cosmic expansion, and gas

scattering effects. However, only perturbations in DM are significant for structure

growth [79, 80, 82]. In this way, we need to derive a differential equation for the

matter density contrast δm incorporating each one of these elements.

On sub-horizon scales, the Newtonian approximation can be used to derive such

a differential equation. However, the Newtonian description breaks down on scales

comparable to or larger than the Hubble radius, as well as for relativistic fluids

like photons and neutrinos. In these cases, a fully general-relativistic approach, as

outlined in Section 3.5, is required for accurate modeling.

By combining the relativistic Poisson, continuity, and Euler equations obtained

in Section 3.5, we derive the following differential equation for the matter contrast:

δ̈m + 2Hδ̇m − c2s

(
1

a2
∇2 +

4πGρ̄m
c2s

)
δm = 0 , (3.89)
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describing how the matter fluctuations evolve over time in an expanding spacetime.

This equation is a wave equation, characterized by second-order derivatives in both

time, δ̈m, and space (cs/a)
2∇2δm. It also includes a friction-like term, 2Hδ̇m, due to

expansion and a gravity term (4πGρ̄m/c
2
s )δm. In the MD epoch, the pressure term

can be neglected as cs → 0, simplifying the contrast equation to

δ̈m + 2Hδ̇m − 4πGρ̄mδm ≃ 0 . (3.90)

This is the key equation describing how the inhomogeneities evolved from the MD

era to the present, according to FLRW cosmology. Its solution can be split into two

modes: an increasing mode, δ+, and a decreasing mode, δ−. The first one determines

how matter clumps together, while the second one vanishes with time.

To quantify how rapidly structures grow, we define the growth function

fg(a) ≡
d ln δm(a)

d ln a
. (3.91)

A widely used parameterization of this function is given by [170]

fg(a) ≃ Ωγ
m , (3.92)

where γ is known as the growth index. The growth index γ is typically constant in

many cosmological models based on GR. In the ΛCDMmodel, for example, γ ≃ 0.55.

In contrast, γ can vary over time in modified theories such as f(R) gravity [171].

The growth function, or growth rate, fg(a), consist in a very important quantity

to discriminate between different cosmological models. It can be inferred directly

via RSD observations. As we will see, fg also depends on the scale of perturbations,

k, in many alternative theories, particularly in f(R) gravity.

Another observational quantity related to matter fluctuations, both in the early

(CMB) and late (LSS) universe, is the root mean square of matter fluctuations at

physical scale R, denoted by σR(a). It is defined as [80]

σR(a) ≡
1

2π2

∫ ∞

0

dk k2Pm(k, a)W2(kR) , (3.93)

where Pm is the matter power spectrum and W is a window function for σR. Since

cosmological observations are often performed at the physical scale corresponding

to R = 8Mpc/h, the value σ8,0 ≡ σ8(a0) is commonly used to denote the root mean

square of matter fluctuations today.

Current constraints on the strength of matter clustering are performed using the

parameter S8 ≡ σ8,0

√
Ωm,0

0.3
, rather than σ8,0 alone. Anyway, recent observations from

early and late universe show a tension in the S8 measurements at 2− 3σ CL [114].

55



Let us consider the following measurements on the flat-ΛCDM basis:

• SLSS
8 = 0.776± 0.017 at 68% CL [172] and

• SPlanck
8 = 0.832± 0.013 at 68% CL [88],

performed by the DES and Planck collaborations, respectively. See Refs. [173–175]

for additional S8 measurements.

Given the growth rate, fg(a), and the amplitude of matter fluctuations, denoted

by σ8(a), the product of these quantities yields the normalized growth rate

[fσ8](a) =
σ8,0
δm,0

[
d δm(a)

d ln a

]
, (3.94)

where δm,0 ≡ δm(a0). This combination is more commonly used than fg(a) to derive

constraints for model parameters, primarily due to the availability of data.

3.7 Primordial inflation

Primordial inflation, also known as cosmic inflation or even the initial conditions,

refers to a postulated early stage of supraluminal expansion, where the scale factor

grew exponentially, assumed to occur when the universe was around 10−34 s years old,

immediately after the milestone of the Big Bang. The observed features of the late

universe, such as flat three-space (the flatness problem), homogeneity in the spatial

CMB temperature distribution (the horizon problem), and the absence of magnetic

monopoles (the cosmic relics problem), unavoidably lead to a fine-tuning of the initial

conditions following a FLRW cosmology. Furthermore, the HBB cosmology itself

does not explains the physical mechanism responsible for generating cosmological

perturbations (the structure formation problem) in the early universe, which later

evolved into the various structures observed today. Thus, cosmic inflation is added

to address the puzzles posed by HBB cosmology [176].

It must be emphasized that both the flatness and horizon problems are not strict

inconsistencies in the HBB model. If we assume that the total density Ω(t) was ini-

tially exceedingly close to unity and that the universe began homogeneously over

super-Hubble scales (while having just the right amount of inhomogeneity to account

for structure formation), it will continue to evolve as flat and uniform. However,

these assumptions imply a highly unlikely scenario for the late universe, realiz-

able only under very specific initial conditions [177]. To allow the current universe

to emerge from arbitrary initial conditions and to provide a fundamental physics

explanation for primordial fluctuations, cosmic inflation was proposed around the

1980s [48, 178, 179].
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3.7.1 HBB issues

Let us now briefly introduce each of the questions posed by HBB aforementioned,

namely: (i) the flatness problem, (ii) the horizon problem, (iii) the cosmic relics

problem, and (iv) the primordial fluctuations problem.

Flatness problem

First, we observe that setting Ω0 = 1 in the Friedmann equation, rewritten as

Ω(t)− 1 = ΩK(t) , (3.95)

is an unstable situation, as ΩK(t) ≡ −K/H2(t) and the comoving Hubble radius

H−1(t) = [a(t)H(t)]−1 is a monotonically increasing function over time. Strictly

speaking, we should have

|Ω(tBBN)− 1| ≲ 10−16 , (3.96)

|Ω(tGUT)− 1| ≲ 10−55 , (3.97)

|Ω(tPl)− 1| ≲ 10−61 , (3.98)

where tBBN ≈ 3min corresponds to the time of BBN, tGUT ∼ 10−33 s to the Grand

Unified Theory (GUT) era, and tPl ∼ 10−43 s to the Planck time. Eq. (3.95) implies

that any deviation from these values during their respective epochs would result in

ΩK being significantly different from zero today.

Horizon problem

Secondly, calculations of the particle horizon angular radius using a flat-FLRW

cosmology,

θp =

√
Ωm,0 a+ Ωr,0 −

√
Ωr,0√

Ωm,0 + Ωr,0 −
√

Ωm,0 + Ωr,0

, (3.99)

where θp ≡ dp/dα, give θp (trec) ≈ 0.017, corresponding to an angular separation of

approximately 1◦ in the CMB at recombination. This implies a total of around 104

causally disconnected regions in the CMB sky at recombination. As a result, there

would be no physical reasons for the uniformity in the temperature distribution of

the CMB on angular scales larger than 1◦.

Cosmic relics problem

The successive spontaneous symmetry breaks that occurred in the early universe

would have generated several topological defects via the Kibble mechanism [180].

Most of these vacuum configurations are highly stable and fall into three categories:

magnetic monopoles (point-like), cosmic strings (one-dimensional), and domain
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walls (two-dimensional). Hybrid defects from two or three categories, as well

as non-topological configurations, are also possible. Given that the energy scale

associated with the GUT era is around 1016GeV, while the rest energy of most

massive particles (e.g., neutrons and protons) is around 1GeV, a large number

of these massive topological defects should have formed, making them potentially

observable today. However, none of these relic particles have been observed to date.

Structure formation problem

CMB and LSS observations confirm the existence of small inhomogeneities in the

early universe, which are expected to evolve into present cosmic structures. However,

the standard HBB cosmology does not provide a physical mechanism for generating

the primordial curvature perturbations S, or ζ, which are later converted into both

metric (Φ) and matter (δq) fluctuations.

3.7.2 Inflationary dynamics

It is well known that an accelerated expansion phase can be driven by a scalar field

that dominates the energy density of the universe. Scalar fields are fundamental

ingredients of the particle physics, representing spin-zero particles, and are often

associated with symmetry breaking, such as those in GUT, supersymmetry, and

others. The most famous example is the Higgs field, which breaks the electroweak

symmetry. Its existence was first theorized in 1964 by P. Higgs and five other

physicists [181–183], and confirmed in 2013 at the LHC at CERN [184]. P. Higgs

and F. Englert were awarded the 2013 Nobel Prize in Physics for predicting the

existence of both the Higgs field and Higgs boson.

The simplest model of inflation involves a homogeneous single scalar field φ(t),

called the inflaton, minimally coupled with gravity and characterized by its potential

V (φ). Such a theory is described by the action [81]

Sφ =

∫
d4x

√−g
[

1

2κ2
R +

1

2
gµν∂µφ∂νφ− V (φ)

]
, (3.100)

Notice that the first term on the right-hand side corresponds to the usual Einstein-

Hilbert Lagrangian, LEH (by setting Λ = 0), while the remaining two terms are

associated with the inflaton field φ.

Assuming a spatially flat space and a perfect fluid, the energy-momentum tensor

corresponding to the extra scalar field, φ, is described by

T (φ)
µν = − 2√−g

δSφ
δgµν

= ∂µφ∂νφ− gµν

[
1

2
∂ρφ∂

ρφ+ V (φ)

]
. (3.101)
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For an homogeneous field configuration (∇2φ = 0), this leads to

ρφ =
1

2a2
(φ′)

2
+ V (φ) , (3.102)

Pφ =
1

2a2
(φ′)

2 − V (φ) . (3.103)

Hence, the EoS for the inflaton is

wφ =
Pφ
ρφ

=

(
φ′/

√
2a
)2 − V (φ)(

φ′/
√
2a
)2

+ V (φ)
. (3.104)

By replacing both the energy density and pressure given in Eq. (3.102)

and (3.103), respectively, into Eq. (3.50), we obtain the Friedmann equation in

conformal time,

H2 =
κ2

3

[
1

2
(φ′)

2
+ a2V (φ)

]
. (3.105)

Next, the energy-momentum conservation, expressed as ∇µT
(φ)
µν = 0, leads to the

Klein-Gordon equation,

φ′′ + 2Hφ′ + a2Vφ(φ) = 0 , (3.106)

where we have defined V,φ ≡ dV/dφ. Eq. (3.105) describes the expanding universe as

being dominated by a homogeneous scalar field, φ(t), whose dynamics is determined

by Eq. (3.106). Additionally, we can see from the acceleration equation (3.59) that

the condition for inflation, ä = H′/a > 0, requires (φ′/a)2 < V (φ).

3.7.3 Slow-roll approximation

A dynamical homogeneous scalar field φ can trigger an era of accelerated expansion

without spoiling the HBB successes only if its potential V (φ) is sufficiently flat,

i.e., (φ′/a)2 ≪ V and |φ′′| ≪ 2Hφ′. These conditions are known as the slow-roll

conditions [176, 177], which give us the approximation

2Hφ′ ≃ −a2V,φ , (3.107)

H2 ≃ κ2

3
a2V , (3.108)

In this case, the dynamics of inflation can be expressed in terms of the first two

slow-roll parameters, defined ass [176]

ϵV ≡ 1

2κ2

(
V,φ
V

)2

, ηV ≡ 1

κ2

(
V,φφ
V

)
. (3.109)
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To effectively reach the slow-roll approximation, we must have ϵV ≪ 1 and |ηV | ≪ 1,

i.e., V,φ, V,φφ ≪ V , for a significant period of time. The inflationary phase ends when

ϵV and ηV grow to order unity, thereby violating the slow-roll conditions.

Often, the scale factor at any instant between the beginning and end of inflation

is computed in terms of the number of e-folds remaining before the end of the

inflation, defined as

N ≡ ln
(aend
a

)
=

∫ φ

φend

dφ√
2ϵV

, (3.110)

where φend is the value of the scalar field at the end of the inflation. This quantity

measures the amount of physical expansion during inflation. The Planck collabora-

tion assumes an uncertainty of 50 < N∗ < 60 for a pivot scale k∗ = 0.002Mpc−1,

which has proven sufficient to solve the main HBB puzzles [185].

3.7.4 Primordial power spectrum

The inflaton field is assumed to have quantum fluctuations on the order of the Planck

length, such that

φ(η, xi) = φ̄(η) + δφ(η, xi) , (3.111)

where φ̄ corresponds to the homogeneous background value, which depends only on

time, and δφ describes small fluctuations around φ̄ that may also depend on the

spatial coordinates xi. Once more, we will exclusively examine linear perturbations.

In this way, the perturbed energy density, pressure, and momentum density for

the inflaton are given by

δρφ = a−2
[
φ̄′ (δφ′ − φ̄′Φ) + a2V,φδφ

]
, (3.112)

δPφ = a−2
[
φ̄′ (δφ′ − φ̄′Φ)− a2V,φδφ

]
, (3.113)

δqφ = −a−2φ̄′δφ . (3.114)

The relevant gauge-invariant quantity here is defined as

ξ ≡ δφ+
φ̄′

HΨ . (3.115)

Therefore, the energy-moment conservation leads to the perturbed Klein-Gordon

equation [176],

ξ′′ + 2Hξ′ + k2ξ + a2
[
V,φφ −

κ2

a2

(
a2φ̄′2

H

)′ ]
ξ = 0 , (3.116)

where k2 corresponds to the eigenvalues of the Laplacian operator via ∇2ξ = −k2ξ.
Eq. (3.116) can be solved using the Mukhanov-Sasaki method [165, 186], which
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allows us to find ξ(k). Such a solution is useful for obtaining the primordial power

spectrum [176],

Pξ(k) ≡
4πk3

(2π)3
|ξ(k)|2 ≃

{
(k/2πa)2 , for k ≫ H
(H/2π)2 , for k ≪ H

. (3.117)

Quantum fluctuations generated during a slow-roll inflationary stage are expected

to be nearly Gaussian. Therefore, the primordial power spectrum above contains all

of information about the distribution of fluctuations.

Single-field slow-roll inflation is expected to generate a nearly scale-invariant

spectrum of scalar fluctuations, given by

Pξ = Aξ

(
k

k∗

)nξ−1

≈ Aξ . (3.118)

A scale-invariant spectrum (nξ = 1), meaning constant variation across all length

scales, is known as the Harrison-Zel’dovich spectrum. Inflation should also have

produced primordial gravitational waves (PGWs), which affect the B-modes of CMB

polarization. These tensor fluctuations are related to scalar modes through the

tensor-to-scalar ratio, rinf = (φ̄′/H)2 (PT/Pξ), where PT is the primordial tensor

power spectrum [176].

3.7.5 HBB issues revisited

We are now ready to demonstrate how an early inflationary period resolves each of

the previously raised HBB problems. First, we recall that the slow-roll conditions

require the inflaton potential V (φ) to be sufficiently flat to maintain the successes

of the HBB model, starting from BBN. This implies that V (φ) must remain nearly

constant throughout much of the inflation. As a result, the Hubble rate,

H =
H
a

≃
(
κ2V

3

)1/2

, (3.119)

is also approximately constant. By integrating this equation, we obtain the solution

a(t) ≈ aend e
H(t−tend) , (3.120)

telling that the scale factor a evolves exponentially, while H remains quasi-constant,

resembling a de Sitter universe. Such a similarity is evident because (φ′/a)2 ≪ V

results in an EoS parameter wφ ≈ −1, which is similar to that of the cosmological

constant.
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Flatness problem

Assuming |ΩK | ∼ 1 at the beginning of inflation and using solution in Eq. (3.120),

Eq. (3.95) becomes

|Ω− 1| ≈ 1

(aendH)2
e−2H(t−tend) . (3.121)

Notice that this expression tends to zero as t → ∞, indicating that any curvature

present in the early universe was eliminated by the exponential expansion during

inflation.

Horizon problem

By substituting the solution in Eq. (3.120) into Eq. (3.31), we obtain the following

expression for the particle horizon, in units where c = 1,

dp(t) =
1

H

[
eH(t−tend) − 1

]
. (3.122)

This means that, during inflation, the particle horizon grows exponentially, while

the Hubble horizon rH ≈ H−1 remains approximately constant. Hence, regions that

are not in causal contact today could have been causally connected before inflation.

Cosmic relics problem

Since the energy density of massive particles decreases more rapidly as

ρ ∝ a−3, the sudden expansion of the scale factor suppresses the energy density as

ρ ∝ exp [−3H (t− tend)] for any relic particle produced at least 20 e-folds before

the end of inflation. As a result, an inflationary period caused magnetic monopoles,

predicted by certain spontaneously broken gauge theories, to effectively disappear

from the universe.

Structure formation problem

Primordial fluctuations are necessary for gravitational instability to lead to struc-

ture formation. Let us recall the gauge-invariant definition of the inflationary field

perturbation, ξ. By combining Eqs. (3.81), (3.102), (3.103), (3.114), and (3.115),

we obtain

S =
H
φ̄′ ξ . (3.123)

The connection between the power spectra of ξ and S is given by

Ps =

(H
φ̄′

)2

Pξ , (3.124)
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Symbol Parameter Type Planck18 Constraints

Ωb baryon density background Ωbh
2 = 0.0224± 0.0001

Ωc DM density background Ωch
2 = 0.120± 0.001

θMC acoustic angular scale background 100θMC = 1.0419± 0.0003
τre optical depth background τ = 0.054± 0.007
As spectral amplitude inflation ln (1010As) = 3.044± 0.014
ns spectral index inflation ns = 0.965± 0.004

Table 3.2: The six primary parameters of the flat-ΛCDM concordance model, as
determined by the Planck collaboration [88, 185].

where the corresponding spectral index is

Ps = As

(
k

k∗

)ns−1

. (3.125)

In this way, the comoving curvature perturbation S, or the potential Φ, emerges from

inflaton quantum fluctuations ξ. Ultimately, the perturbations ξ was stretched by

inflation and converted into S on super-Hubble scales, where they remained frozen

and eventually seeded the structure formation. After inflation, the universe under-

went a brief period of reheating, during which the inflaton particles are converted

into radiation, allowing the universe’s dynamics to follow the FLRW cosmology.

3.8 Flat-ΛCDM model and observations

The models we have discussed so far, based on GR, the cosmological principle, and

the RW metric, are known as FLRW, or HBB, cosmologies. In order to align with a

wide range of astronomical observations, FLRWmodels need to assume the existence

of non-baryonic dark matter, late-time dark energy, and initial conditions established

by primordial inflation. Depending on the specific models for dark matter and dark

energy, inflationary scenario, and spatial curvature assumed, cosmological models

may involve seven or more free parameters.

The flat-ΛCDMmodel represents a particular case of FLRW cosmologies, defined

by three key assumptions: (i) dark energy corresponds to a cosmological constant,

(ii) dark matter is cold, and (iii) the spatial geometry is flat. If we also consider a

single-field slow-roll inflation to set the initial conditions, we arrive at the standard

model of cosmology (SMC). This model consists of six independent parameters,

known as primary parameters (see Table 3.2), used by fitting the CMB primordial

power spectrum (see Figure 3.10). Other cosmological parameter, such as H0, Ωm,0,

and ΩΛ, referred to as secondary parameters, can be derived from the six primaries

combined with other observational data. Since the flat-ΛCDM model provides the

best fit to a wide range of observations, it is often called the concordance model.
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datasets. Note that a flat spatial three-section can only be confirmed after adding
the BAO data [88].
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In the last column of Table 3.2, we present the most recent measurements from

the Planck collaboration for each of the primary parameters in the base-ΛCDM.

These values are widely regarded in the literature as the most stringent cosmolog-

ical constraints to date. Additionally, Planck provides remarkable restrictions on

secondary parameters, including the most relevant ones:

• the total mater density Ωm,0 = 0.315± 0.007,

• the vacuum density ΩΛ = 0.685± 0.007,

• the matter fluctuation amplitude σ8,0 = 0.811± 0.006, and

• the age of the universe t0 [Gyr] = 13.797± 0.023,

all at 68% CL [88]. Figure 3.14 shows the superior precision of Planck’s constraints

compared to those from DES [187, 188] and KiDS [189] collaborations.

Let us now examine the simpler extension of the flat-ΛCDM model containing

just one extra free parameter: the curvature density today, ΩK,0. This extension

is referred to as ΛCDM+ΩK. In this case, Planck 2018 TT,TE,EE+lowE+lensing

data yields ΩK,0 = −0.0106±0.0065 at 68% CL. However, when incorporating BAO

observations, this value changes significantly to ΩK,0 = 0.0007± 0.0019, confirming

an effectively Euclidean universe at 68% CL [88] (see Figure 3.15).

The second simpler extension of the flat-ΛCDM model considers DE as an addi-

tional degree of freedom, with wDE ≡ w as a free parameter, referred to as wCDM.

In this case, Planck 2018 data combined with SNe and BAO yield w = −1.03±0.03,

consistent with wΛ = −1 from ΛCDM [88].

A two-parameter dynamic DE model characterized by wDE(a) = w0+wa(1− a),

where w0 and wa are assumed to be constants, is often tested. This relation is

known as the CPL parameterization [22, 23], leading to the w0waCDM extensions.

For this model, Planck 2018, SNe, and BAO data provide w0 = −0.957± 0.080 and

wa = −0.29+0.32
−0.26, also consistent with the flat-ΛCDM model [88].

Regarding primordial inflation, Planck also investigated the scale dependence of

the primordial spectral index and the relative amplitude of PGWs. They obtained

dns/d ln k = −0.0045±0.0067 at 68% CL from TT,TE,EE+lowE+lensing data, and

r0.002 < 0.10 at 68% CL from TT,lowE, and lensing data. These results are consistent

with a slow-roll inflationary period driven by a single scalar field, as described by

the standard inflaton scenario [185].

Other astrophysical observations also constrained the cosmology as the Planck

does. Utilizing data from galaxies, quasars, and Ly-α forest, the completed SDSS-

IV eBOSS obtained H0 = (67.35 ± 0.97) km s−1Mpc−1 and rd = (149.3 ± 2.8)Mpc

(from BBN+BAO data) [190], in good agreement with CMB data, both in the base-

ΛCDM. In the perturbative level, the combined analysis from Planck 2018, SNe,
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Figure 3.16: 68% and 95% marginalized posterior constraints in the w0 − wa
plane, considering the w0waCDM extension, from DESI BAO alone (black dashed),
DESI+CMB (pink), DESI+Pantheon+ [192] (blue), DESI+Union3 [193] (orange),
and DESI+DESY5 [194] (green). The discrepancies with ΛCDM here are estimated
to be ≳ 2σ [195].

SDSS, BAO, RSD, and DES 3×2pt yielded σ8,0 = 0.8073± 0.0056 [190]. This value

is clearly in tension with the BOSS DR12 dataset combined with BBN prior, which

provides σ8,0 = 0.692+0.035
−0.041 [191].

The latest constraints on cosmology are due to BAO observations from the DESI

DR1 BAO [196, 197]. In general, DESI DR1 BAO results conform to the flat-ΛCDM

model, either alone:{
Ωm,0 = 0.295± 0.015

rdh = (101.8± 1.3)Mpc
at 68% C.L. , (3.126)

or combined with a few other observables, for example:

DESI+BBN+θ∗

{
Ωm,0 = 0.295± 0.007

H0 = (68.52± 0.62) km
sMpc

at 68% CL , (3.127)

and

DESI+CMB

{
Ωm,0 = 0.307± 0.005

H0 = (67.97± 0.38) km
sMpc

at 68% CL . (3.128)

For the two simpler extensions, ΛCDM+ΩK and wCDM, the best constraints from

the DESI collaboration indicate ΩK,0 = 0.0003+0.0048
−0.0054 for DESI BAO+BBN+θ∗ and

w = −0.997 ± 0.025 for DESI+CMB+Pantheon+, respectively. It confirms a flat
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DESI+CMB+Union3 (orange), and DESI+CMB+DESY5 (green). The significance
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respectively [195].

geometry and a Λ-like DE at 68% CL. However, when the EoS is allowed to vary over

time, as in the w0waCDM extension, DESI BAO data favor solutions with w0 > −1

and wa < 0, conflicting (w0, wa) = (−1, 0) from ΛCDM. For DESI+CMB, they find

w0 = −0.45+0.34
−0.21 and wa = −1.79+0.48

−1.00, indicating a tension of approximately 2.2σ.

When incorporating SNe Ia information, the tension with ΛCDM: (i) remains at

about 2.5σ for Pantheon+ [192], (ii) increase to 3.5σ for Union3 [193], and (iii)

reaches a maximum of 3.9σ for DESY5 [194, 197] (see figures 3.16 and 3.17).

Although the flat-ΛCDM model explains a wide range of observations effectively,

many important observational inconsistencies need to be addressed: the Hubble (H0)

tension, the growth (S8) tension, the lithium problem, CMB anisotropy anomalies,

cosmic dipoles, low baryon temperature, the age of the universe, and other open

questions (see Ref. [198] for a review). Currently, the most explored issues are the

H0 and S8 tensions, along with those related to the dark sector. By far, the most

serious problem with the SMC is the so-called vacuum catastrophe, in which the

observed vacuum density ρΛ is on the order of 1060 − 10120 times smaller than what

is expected from QFT. Part of the community considers these problems indicative

of novel physics underlying the early stages of the universe, while a few attribute

them to systematic effects or incomplete (astro)physical models. A minority believes

that observational data may be biased by the assumption of a fiducial cosmology.

Anyway, “problems are opportunities”, and new scenarios beyond standard model

deserve investigation, as there are compelling motivations for doing so.
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Chapter 4

Modified Gravity and Cosmology

In this chapter, we discuss the formal foundations on which modified (or extended)

theories of gravity rest, and we examine their role within the modern cosmologi-

cal framework. We begin by presenting the primary motivations for modifying GR

and outlining the criteria that an MTG must satisfy to be considered successful.

Following this, we explore four widely discussed MTGs: the Brans-Dicke prototype

theory and its extension to general scalar-tensor theories, higher-dimensional the-

ories, and higher-order gravity. However, our main focus is on the so-called f(R)

theories, or f(R) gravity, as this particular class of higher-order theories offers a

possible explanation for the late-time acceleration of the universe without the need

to invoke dark energy. Consequently, the majority of this chapter is dedicated to

developing f(R) gravity, its equivalence with scalar-tensor theories, its feasibility

criteria, cosmological implications, and observational signatures.

4.1 Why modifying gravity?

GR theory provides an impressive description of gravity and matter, accurately

describing regimes ranging from microscopic to intermediate astrophysical scales

(e.g., Solar System and compact objects). Unlike the Newtonian formulation, GR

offers a geometric view of gravity, unifying space, time, and matter-energy. In GR,

space and time are part of a more fundamental entity called spacetime, which curves

in response to matter-energy, thereby guiding the paths that particles necessarily

follow. From a field theory perspective, GR describes gravitational interaction as

mediated by a massless spin-2 boson, known as the graviton, which interacts non-

minimally with other particles (e.g., scalar fields).

While GR is in full agreement with several astrophysical and cosmological obser-

vations, it is expected to break down at the Planck scale (lPl ∼ 1.6×10−35m), where

a quantum theory of gravity is required in order to describe phenomena occurring

at such small length scales. Additionally, phenomena like the accelerated expansion
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of the universe, the large-scale structure of the cosmos, galaxy cluster dynamics,

and the rotation curves of spiral galaxies suggest that GR might be an incomplete

theory of gravity [199].

Another compelling reason for extending Einstein’s theory is to fully incorporate

Mach’s Principle into gravitation. According to this principle, the local inertial

frame is determined by the average motion of distant objects, implying that the

gravitational coupling at any spacetime point is determined by surrounding matter.

This means gravity could vary with spacetime location, necessitating a reformulation

of inertia and the equivalence principle. The first alternative to Einstein’s GR, and

the prototype for alternative theories of gravity, was the Brans-Dicke theory [36].

In this theory, Mach’s idea are implemented via a variable gravitational constant,

corresponding to a scalar field coupled non-minimally to the 3+1 geometry.

Thus far, we have presented good reasons for going beyond GR, which can be

divided into three categories: quantum gravity, astrophysical and cosmological, and

mathematical motivations. In the following sections, we will discuss each of these in

more detail. However, in this thesis, we would like to emphasize that in this thesis,

we will focus only on the cosmological motivations.

4.1.1 Quantum gravity motivation

One of the main challenges in modern theoretical physics is to build a unified theory,

known as the Grand Unified Theory (GUT), which can simultaneously describe all

four fundamental interactions of nature: electromagnetic, weak, strong, and gravita-

tional forces. These theories are often referred to as theories of everything, with the

main candidates being string and superstring theories [200, 201], and M-theory [202],

which unifies the five different string theories through supersymmetry [203] and su-

pergravity [204]. However, this long-standing dream, pursued since Einstein’s time,

has been frustrated primarily because of gravitation.

In principle, all fundamental fields, including gravity, should be described using

quantum mechanics. Yet, gravity presents unique challenges, as it describes both

the gravitational degrees of freedom and the background spacetime in which these

degrees of freedom reside, it is not possible to renormalize and quantize GR in the

usual way. This dual role makes it impossible to renormalize and quantize General

Relativity (GR) in the standard way. As a result, Einstein’s theory remains valid

only within the low-energy and large-scale domains, while it breaks down at high

energy and very small scales.

There are two main approaches in order to quantizing a classical field theory: the

canonical and covariant methods. The covariant method allows for the construction

of a renormalizable theory of gravity at one-loop in the perturbative series, pro-
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viding corrections to the Einstein-Hilbert action by adding non-minimally coupled

terms between scalar fields and geometry, such as ψR, or terms-like R2, RµνRµν ,

RµνλρRµνλρ, R□R, and R□kR [205]. In fact, such terms appear in the low-energy

limit of string theories [206, 207] or Kaluza-Klein theories [38–40] when extra spatial

dimensions are compactified. Additionally, modifying GR to include quadratic terms

in the Ricci scalar leads to interesting inflationary scenarios, which are expected to

complement the SMC [48].

Finally, theoretical advances in emergent gravity, which posits that gravity

emerges from the thermodynamic properties of spacetime, have shown that Einstein

field equations can be derived from local considerations of equilibrium thermody-

namics [208]. This leads to the conclusion that GR is simply one possible state of

gravity corresponding to thermodynamic equilibrium, and that when this equilib-

rium is perturbed at higher energies, near-equilibrium configurations corresponding

to ETGs should emerge [205].

4.1.2 Astrophysical and cosmological motivation

In Chapter 3, we discussed the main aspects of HBB cosmology and how the flat-

ΛCDM model best fits a wide range of cosmological observations. However, it was

shown that the SMC suffers from certain observational problems, leading to the

inflationary hypothesis [48, 178, 179] Furthermore, the SMC requires the inclusion

of DM and DE, about which we have no information from particle physics, nor have

they been directly observed to date. These deficiencies may stem from an incomplete

and insufficient description of gravity, such as that provided by GR [205].

In this context, cosmic inflation provides a dual motivation for extending GR:

quantum and cosmological. First, it occurs at very high energy scales, close to the

Planck scale, where quantum gravity is expected to provide a complete description.

Second, it is well known that adding a term proportional to R2, with a coefficient

small enough to preserve the successes of HBB, to the Einstein-Hilbert Lagrangian

leads to cosmic acceleration. In fact, in 1980, A. Starobinsky demonstrated that

R2-type corrections to the Einstein-Hilbert Lagrangian can modify the Friedmann

equations to describe an inflationary universe [48]. The Starobinsky model gave rise

to a class of modified theories of gravity known as f(R) gravity.

The DM hypothesis also play a dual role here. First, astrophysical observations

suggest the presence of non-baryonic matter primarily filling the galactic halo and

LSS gaps. Furthermore, the physics underlying BAO observations considers the

existence of decoupled DM in the early universe, forming potential wells around

which the photon-baryon fluid oscillated. This mechanism leaves an imprint in the

CMB angular power spectrum, best matched by adjusting the cosmological model

70



to include approximately 26% of DM. Second, admitting the existence of a new

component in the matter sector necessitates a explanation of its origin through

particle physics; this is the same as asking what particle(s) the DM is made of.

Another way to address the challenges associated with DM is to modify the geometric

sector of Einstein’s equations, i.e., in the Einstein-Hilbert Lagrangian, to account

for these effects.

DE, in turn, is currently the most pressing problem for the SMC. Both LSS

(mainly SNe Ia) and CMB observations indicate that the universe is undergoing an

accelerated expansion phase driven by DE, known only for its property of exerting

negative pressure. The simplest explanation for DE is that it has a constant EoS

equal to −1, i.e., it is a cosmological constant. Since Λ is interpreted a priori as the

quantum vacuum energy density, its contribution to the total energy density can be

estimated from QFT. While QFT predicts a maximum value of ρvac ∼ 1074GeV4,

cosmological observations constraint it to ρΛ ∼ 10−47GeV4. This discrepancy, span-

ning approximately 120 orders of magnitude between theoretical and observed val-

ues, is regarded as the most disastrous prediction in physics of all time, known as

the cosmological constant problem, or vacuum catastrophe [8, 9]. Furthermore, the

cosmological constant (or DE in general), has a normalized energy density that is

comparable to the matter energy density today, a phenomenon referred to as the

coincidence problem [10, 11].

In this context, modifications to the Einstein-Hilbert Lagrangian are made in

order to produce an accelerated universe at late times. This can be considered as

being equivalent to an inflationary universe but slowed by matter, whose density

remains significant today. According to observations, matter (baryons plus DM)

comprises around 31%, while DE makes up about 69% of the total energy density

in the universe (recall Section 3.8 of Chapter 3). Given the similarity between the

current acceleration phase and the primordial inflationary one, f(R) gravity becomes

a viable alternative to the undetected DE.

4.1.3 Mathematical motivation

A third motivation for extending GR arises from mathematical considerations. No-

tably, no quantum theory of gravity or GUT candidate yields exactly GR as its

classical low-energy limit. In fact, theories such as strings and superstrings the-

ory, M-theory, supergravity, and loop quantum gravity [209] emerge from effective

actions that inherently include non-minimal couplings to geometry or higher-order

terms in curvature invariants. These interactions between quantum scalar fields

and background geometry introduce corrections to the Einstein-Hilbert Lagrangian,

explained via corrections in one-loop (or higher) in high-curvature regime [205].
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Furthermore, it is well known that higher-order theories (formulated in the Jor-

dan conformal frame) can be recast as GR with scalar field(s) coupled to gravity

(formulated in the Einstein conformal frame) via a Legendre transformation on the

metric. This has led to debates over whether the mathematical equivalence between

different conformal representations of the theory implies physical equivalence as well.

If the answer is no, this argument does not justify extending gravity. However, if

the answer is yes, it means that GR does not account for all degrees of freedom

inherent in the gravitational field.

Finally, a last mathematical motivation for extending GR is rooted in the Palatini

method of variation, also known as the Palatini formalism or Palatini approach. The

key idea behind this formalism is to treat the connection Γλµν as independent of the

spacetime metric gµν . Physically, this decouples the geodesic and metric structures

of spacetime, enabling an extension of GR. By considering Γλµν independent of gµν ,

one can even drop the symmetry condition on Γλµν . Historically, this approach was

employed by Einstein, in 1925, during his attempt to unify GR with Maxwell’s

electromagnetism [210].

4.2 What a good MTG should do?

A good MTG must meet certain minimum requirements from a phenomenological

standpoint, just as GR does. These requirements can be divided into four regimes:

Newtonian, post-Newtonian, extragalactic, and cosmological. As is well known,

Newtonian gravity was highly successful in explaining gravity phenomena on Earth

and astronomical observations mapping the orbits of planets, compact objects, and

the potential wells of self-gravitating structures. In the post-Newtonian regime, the

parametrized post-Newtonian (PPN) expansion of GR has provided the most precise

estimates for laboratory and Solar System experiments. At the extragalactic scale,

GR predicted phenomena such as black holes, relativistic stars, GL, and GWs. At

cosmological scales, the ΛCDM model – where GR plays a central whole – provides

a powerful framework for explaining early-universe observations, such as BBN and

the CMB, as well as the growth of cosmic structures.

For a MTG to be considered successful, it must satisfy the following criteria:

i. Reproduce Newtonian dynamics in the weak-field, slow-motion limit;

ii. Pass the highly precise classical Solar System tests;

iii Explain extragalactic phenomena, such as black hole dynamics, GL, GWs, and

the matter power spectrum;
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iv. Address the formation of large-scale structures, including galaxies, galaxy clus-

ters, superclusters, voids, and filaments; and

v. Reproduce viable cosmological dynamics consistent with the current range of

astronomical observations (BBN, CMB, BAO, SNe, etc.).

In particular, an outstanding MTG must reproduce the current phase of DE-driven

cosmic acceleration.

Of course, any MTG must ultimately be integrated into a broader framework of

quantum gravity. However, we will not address that aspect in this thesis, as our pri-

mary goal here is to explain the current acceleration phase of the universe using the

Hubble and luminosity distance functions without assuming any exotic components

in the stress-energy tensor, such as DE. Given the highly degenerate nature of the

background, we also explore the perturbative level through the normalized growth

function.

4.3 Theories of modified gravity

Modifying GR is an arduous task mainly for two reasons: (i) its excellent agreement

with current observations, as discussed previously, and (ii) its internal structure is

tightly constrained by consistency requirements, which arise from the nature of the

graviton – described as a massless spin-2 particle. This implies that only a limited

number of modifications to GR can be performed without violating these key points.

In light of this, we recognize (at least) three viable approaches to extending GR:

1. Introducing non-minimal coupling terms between matter fields (particularly

scalar fields) and geometry in the effective gravitational Lagrangian;

2. Incorporating higher-order invariants of the curvature tensor, Rλ
µνρ, into the

Einstein-Hilbert Lagrangian; or

3. Extending the general spacetime to include extra dimensions.

First, GR constrains gravitational effects to be mediated solely by a single rank-2

tensor, the metric tensor gµν , or equivalently, a massless spin-2 particle, the graviton,

in the QFT framework. The first approach to extending gravity allows the gravi-

tational field to interact with extra (specially scalar) fields. The most extensively

studied theory in this context is scalar-tensor gravity, which introduces a coupling

of the form ψR, where ψ is a scalar field. Moreover, there is the possibility that

the additional field(s) could be vector, as in the Einstein-Æther model [211], or even

both, as in tensor-vector-scalar gravity [212].
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In GR, we are required to work with a Lagrangian that is a simple linear function

of the Ricci scalar R. The second way to modify gravity thus involves extending the

effective gravitational Lagrangian to include higher-order invariants of the curvature

tensor, such asR2, RµνRµν , R
µνλρRµνλρ, R□R, andR□kR. The most widely studied

class of such theories is f(R) gravity, which generalizes GR by considering arbitrary

functions of the Ricci scalar in the gravitational Lagrangian. Moreover, higher-

order theories also extend beyond f(R) gravity by incorporating other curvature

invariants. Some examples of these theories include Gauss-Bonnet gravity [213],

based on the Gauss-Bonnet term G1, non-local gravity [215], which relies on the

non-locality term □−1R, and teleparallel gravity along with its generalizations [216],

which involve either the torsion scalar T or the non-metricity scalar Q2.

The third approach in order to extending GR is even more radical, as it involves

introducing extra dimensions to the theory. Theories like Kaluza-Klein, superstring

theory, supergravity, and bosonic string theory postulate extra spatial dimensions.

There are also more unconventional models, such as those proposing multiple time

dimensions, with two [218] or three [219] time dimensions, although these theories

are less explored due to their speculative nature and the lack of empirical support.

Anyway, extra dimensions are typically expected to be compactified at extremely

small scales, on the order of the Planck length, making experimental verification

challenging in the near future. So far, the experience has shown us no evidence

supporting the existence of extra dimensions at either laboratory or astronomical

scales.

4.3.1 The prototype: Brans–Dicke theory

The Brans-Dicke theory [36, 220], sometimes called the Jordan-Brans-Dicke theory,

was one of the first modifications to GR designed to introduce two key elements:

the possibility of a dynamical coupling to gravity and the incorporation of Mach’s

principle. This theory builds upon the following action,

SBD =
1

2κ2

∫
d4x

√−g
[
ψR− ωBD

ψ
gµν∇µψ∇νψ

]
+ SM [gµν , ϕM] , (4.1)

where ωBD is the Brans-Dicke parameter, and ψ is an additional scalar field, often

called the Brans-Dicke field.

1The topological Gauss-Bonnet invariant is a particular combination of curvature invariants,
defined as G ≡ RµνλρRµνλρ − 4RµνRµν +R2. This term naturally arises in the regularization and
renormalization of QFTs in curved spacetime [214].

2The metricity assumption in Eq. (2.8) can be relaxed in order to produce a non-metricity
tensor, defined as Qρµν ≡ ∇ρgµν . In this way, it can be verified that the non-metricity scalar is

defined as Q ≡ − 1
4QµνρQ

µνρ + 1
2QµνρQ

ρνµ + 1
4QµQ

µ − 1
2QµQ̃

µ, where Qµ ≡ Qν
µν and Q̃µ ≡ Qνµ

ν

are acquired from contractions of the non-metricity tensor [217].

74



One of the key features of this theory is that matter is not coupled directly to

the scalar field ψ (this is known as minimal coupling), as indicated by the matter

action SM not depending on ψ. However, ψ couples directly to the Ricci scalar R (a

non-minimum coupling), so the gravitational field is described by both the metric

gµν and scalar field ψ.

By varying the Brans-Dicke action with respect to gµν and ψ, we derive two sets

of equations. First, the field equations, analogous to Einstein’s equations:

Gµν −
ωBD

ψ2

[
∇µψ∇νψ − 1

2
gµν (∇ψ)2

]
− 1

ψ
(∇µ∇νψ − gµν□ψ) =

κ2

ψ
Tµν . (4.2)

Second, a wave equation governing the behavior of the scalar field ψ:

2ωBD□ψ
ψ

− ωBD

ψ2
gµν∇µψ∇νψ +R = 0 . (4.3)

By contracting the first equation with gµν and substituting the second one into the

result, we obtain the equation

□ψ =
κ2T

2ωBD + 3
, (4.4)

which demonstrates that the matter distribution acts as a source for ψ, thereby

satisfying the requirements of Mach’s principle. Consequently, ψ can be viewed as

an auxiliary geometrical contribution to the usual Einstein field equations.

Originally, Brans and Dicke’s idea was to define an effective gravitational constant

as (in our units)

Geff(ψ) ≡
G

ψ
, (4.5)

thereby introducing a variable gravitational coupling, inspired by Dirac’s ideas. It is

often said that as ωBD → ∞, the Brans-Dicke theory reduces to Einstein’s GR. This

is based on the assumption that in this limit, ψ ∝ ω−1
BD. However, this assumption is

not valid in all cases. Some solutions show that ψ ∝ ω
−1/2
BD , which cannot be contin-

uously deformed into corresponding GR solutions [221]. For instance, the solution

discussed in Section 4 of Ref. [222] exhibits the expected asymptotic behavior but

does not possess a true GR limit.

4.3.2 General scalar-tensor theories

Scalar-tensor theories are natural extensions of the Brans-Dicke theory, incorporat-

ing two key generalizations to its action:

1. The Brans-Dicke parameter, ωBD, becomes a general function of the scalar

field ψ, denoted as ω(ψ), and
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2. A potential term, V (ψ), is introduced for the scalar field in the Lagrangian.

Thus, the action describing these theories is expressed as

Sst =
1

2κ2

∫
d4x

√−g
[
ψR− ω(ψ)

ψ
gµν∇µψ∇νψ − V (ψ)

]
+ SM [gµν , ϕM] . (4.6)

where SM is the matter action, and ϕM represents the matter fields. The field

equations that arise from this action, after appropriate manipulations, are

Gµν −
ω(ψ)

ψ2

[
∇µψ∇νψ − 1

2
gµν (∇ψ)2

]
− 1

ψ
(∇µ∇νψ − gµν□ψ)+

V (ψ)gµν
2ψ

=
κ2

ψ
Tµν ,

(4.7)

while the equation governing the scalar field ψ is

[2ω(ψ) + 3]□ψ + ω,ψ(ψ)g
µν∇µψ∇νψ − ψV,ψ(ψ) + 2V (ψ) = κ2T (4.8)

where ω,ψ ≡ dω/dψ and V,ψ ≡ dV/dψ. The Brans-Dicke theory can be recovered by

taking ω → ωBD and V → 0.

Scalar-tensor theories, in particular, Brans-Dicke theory, have been extensively

studied in the literature. Although many old and new findings in this regard are very

interesting, exploring them is not part of the aim of this thesis. See Refs. [37, 221]

for a comprehensive review.

4.3.3 Higher dimensional theories

GR is formulated on a (pseudo-)Riemaniann 3+1 dimensional manifold. However,

Riemannian geometry is not restricted to 3+1 dimensions, allowing us to consider

spacetime with more general dimensions. In fact, the possibility of extra dimensions

was proposed as early as the initial development of GR, beginning with the work of

G. Nordström [223], T. Kaluza [38], and O. Klein [39]. In principle, the idea of extra

dimensions arose from the attempt to reconcile the principles of quantum mechanics

and GR.

Given the wide variety of theories that attempt to explain gravity from the

perspective of a spacetime with dimensions beyond the known 3+1 of GR, and the

fact that, in principle, these theories lack a mathematical framework to unify them

into a single general description (as was the case with scalar-tensor theories), we

shall limit our discussion to the notions proposed by Kaluza and Klein.

The Kaluza-Klein theory emerges as an attempt in order to unify gravity and

electrodynamics by considering GR on a 4+1 dimensional manifold, where one of

the spatial dimensions is small and compact. Let D ≡ D +1 be the total dimensions

of the theory, where D corresponds to the number of spatial dimensions and 1
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represents the time. The Kaluza-Klein theory is formulated in D = 5, or D = 4.

The generalized Einstein-Hilbert action for a 4+1 dimensional spacetime is given by

SD =
1

2κ2D

∫
dDX

√
−G R + SM [GAB, ϕM] , (4.9)

where κ2D is Einstein’s constant in D dimensions, G is the determinant of the D-
dimensional metric GAB, and R is the trace of the D-dimensional Ricci tensor RAB,

with indices A,B running from 0 to 4 (4 being the Kaluza-Klein extra dimension).

The issue with considering extra dimensions is that gravity has not been ob-

served as an interaction in D > 4 dimensions, either in laboratory experiments or

astronomical observations. For example, the Newtonian potential due to a point

source in a D-dimensional universe scale as Φ ∝ r−(D−3), meaning that planetary

orbits remain stable only for D = 4. This implies that any extra dimensions, if they

exist, must be relevant only at very small scales, on the order of the Planck length,

or on cosmological scales far beyond the Solar System.

The solution is to consider that the extra dimensions are compactified on a circle

of radius L/2π. To formalize this, let us define the coordinates XA = (xµ, z), where

the coordinate z lies along the compact direction, such that 0 ≤ z ≤ L. In this

framework, we can expand the metric along the extra dimension z as a Fourier

series,

GAB(x, z) =
∑
n

G (n)
AB (x) e

inz/L . (4.10)

This implies the existence of an infinite number of extra fields in D dimensions.

Modes with n ̸= 0 correspond to massive fields with mass |n|/L, whereas the n = 0

mode corresponds to a massless field. Since L ∼ lPl, the Fourier modes converge,

allowing us to consider only the first mode, i.e., the n = 0 mode.

Focusing now on the zero modes G (0)
AB(x), we decompose the metric components

to define the following new fields:

G (0)
µν ≡ gµν e

2A ψ + AµAν e
2Bψ , (4.11)

G (0)
µz ≡ Aµ e

2Bψ , (4.12)

G (0)
zz ≡ e2Bψ , (4.13)

where A ≡ 1/
√

2(D − 1)(D − 2) and B ≡ −(D − 2)A . It is important to note

that the physical size of the compact dimension z is not necessarily given by L, but

by LeBψ(x). In the language of field theory, gµν(x), Aµ(x), and ψ(x) represent the

metric, the gauge field, and the dilaton field, respectively. Ultimately, the gauge

field Aµ(x) corresponds to the eletromagnetic four-potential described in Maxwell’s

covariant equations.
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In these terms, the D-dimensional effective action is given by

Seff =
L

2κ2D

∫
dDx

√−g
[
R− 1

2
(∇ψ)2 − 1

4
e−2A (D−1)ψF 2

]
, (4.14)

where F 2 = FµνF
µν , and Fµν is the Faraday tensor representing the electromagnetic

field strength. This action leads to the following field equations:

Gµν =
1

2

[
∇µψ∇νψ − 1

2
(∇ψ)2gµν +

(
FµσF

σ
ν − 1

4
F 2gµν

)
e−2A (D−1)ψ

]
, (4.15)

∇µ
[
e−2A (D−1)ψFµν

]
= 0 , (4.16)

□ψ = −1

2
(D − 1)A e−2A (D−1)ψF 2 . (4.17)

The first equation shows how four-dimensional matter (electromagnetic radiation)

arises purely from the geometry of the fifth-dimensional empty space, while the

second one is clearly a form of Maxwell’s equations. The third equation can be

interpreted as a source equation for the dilaton field ψ.

Kaluza-Klein theory was originally designed for D = 4 (or D = 5). However,

its developers were frustrated by the presence of the dilaton in the resulting four-

dimensional effective theory, which introduced an extra degree of freedom. This

occurs because one cannot simply set ψ = 0 while retaining a non-trivial Maxwell

field F̃µν , as doing so would conflict with the field equations (4.15), (4.16), and

(4.17) [43]. As a result, Kaluza-Klein theory has three dynamical variables – namely

gµν , Aµ, and ψ – whereas GR involves only gµν .

Unfortunately, Kaluza-Klein theory faces some technical challenges. First, to

ensure that L accurately reflects the compactification scale, ψ must be stabilized near

zero. This requires a potential V (ψ) that admits a stable solution, a challenge known

as the moduli stabilization problem [224–227]. Additionally, from a cosmological

perspective, physicists wonder how the universe evolved into a state where only three

spatial dimensions grew to macroscopic scales. More specifically, what mechanism

in the early universe prevented the extra spatial dimensions from expanding as much

as the usual three? Or, did these dimensions initially expand and then contract to

their current state? [43].

4.3.4 Higher order theories

The third class of extended theories of gravity is known as higher-order theories. The

term higher-order refers to the fact that these theories incorporate, by construction,

higher-order terms in curvature invariants, leading to field equations that involve

derivatives of the metric tensor higher than second-order.
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The central idea behind higher-order theories is to generalize the gravitational

Lagrangian LEH ≡ (R − 2Λ)/2κ2 to be a more general function of the Ricci scalar,

or even for depending on other curvature invariants. Examples of such invariants

include R2, RµνRµν , R
µνλρRµνλρ, R□R, and R□kR. The first case gives rise to the

classical f(R) theories of gravity, which are extensively explored in the literature

and are the primary focus of this thesis. The second case leads to theories of fourth,

sixth, eighth, or higher-order, depending on the curvature invariants chosen.

To start, consider a theory that includes the three linear and quadratic contrac-

tions of the Riemann tensor: R, RµνRµν , and RµνρσR
µνρσ. The most general action

that can be constructed in this case is

SHO =
1

2κ2

∫
d4x

√−g f(R,RµνRµν , R
µνρσRµνρσ) + SM (gµν , ϕM) (4.18)

where f is an arbitrary function of its arguments. Varying this action with respect

to the metric tensor yields the following field equations:

I (1)
µν + I (2)

µν + I (3)
µν = κ2Tµν , (4.19)

where
I (1)
µν ≡ −1

2
fgµν + f,RRµν + 2f,CR

ρ
(νRµ)ρ + 2f,IR

ϵσρ
(νRµ)ρσϵ ,

I (2)
µν ≡ ∇ρ∇σf,R (gρσgµν − gµρgνσ) +□ (f,CRµν) + gµν∇ρ∇σ (f,CRρσ) ,

I (3)
µν ≡ −2∇ρ(f,CRρ(µ)ν) − 4∇ρ∇σ(f,IRσ(µν)ρ) ,

(4.20)

with C ≡ RµνRµν , I ≡ RµνρσRµνρσ, and f,Υ ≡ df/dΥ where Υ = (R,C, I, ...).

Clearly, these equations are of fourth-order. However, if we consider f to be linear

in the second derivatives of the metric tensor, i.e., f (...,□R), the field equations

will be of sixth-order. By induction, f (...,□2R) will yield equations of eight-order.

It turns out that the above description is too general and could hardly be con-

sidered itself as a viable immediate alternative to GR. Instead, theorists tend to

pursue simpler paths by examining specific cases of the function f that involve only

one or, at most, two curvature invariants simultaneously. This is the case with f(R)

theories, Gauss-Bonnet gravity f(G), teleparallel gravities f(T ) and f(Q), non-local

theories f(□−1R) and f(R,□−1R), f(R,G) theories, and f(R, T ) gravity. Among

all higher-order theories, f(R) gravity is the simplest and most extensively explored,

and it will receive significant emphasis throughout this thesis.
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4.4 f (R) theories of gravity

Among the higher-order theories of gravity, the most widely studied is f(R) gravity,

which is also the primary focus of this thesis. This section delves deeper into f(R)

gravity compared to previous discussions on scalar-tensor and higher-dimensional

theories. Comprehensive reviews on f(R) gravity can be found in the literature;

see, e.g., Refs. [35, 43, 45]).

The program to developing a renormalizable and potentially quantizable theory

of gravitation gravitation has its roots in the early days of GR. However, the study

of such theories gained renewed interest at least three times post-1960. First, in

the 1960s, it was discovered that adding counter terms to Einstein’s equations could

resolve certain singularities in the stress-energy tensor that arose from the quantiza-

tion of matter fields interacting with a classical gravitational field. In particular, a

ln∞ singularity could be mitigated with a counter term derived from a Lagrangian

quadratic in the Riemann tensor [228]. Then, around the 1980s, it was shown that

f(R) theories enhance renormalization properties [41] and can naturally lead to

an inflationary phase in the early universe [48]. More recently, f(R) theories have

emerged as viable alternative to DE for explaining the current accelerated expansion

of the universe, with this acceleration viewed as a geometric effect.

This latter point – the ability of f(R) theories to explain the late accelerated

expansion without invoking DE – is the motivation for investigating them here.

While promising, these theories face numerous challenges. Key issues in f(R) gravity

include the following [35]:

• Different approaches (metric, Palatini or hybrid) result in distinct field equa-

tions;

• The Cauchy problem is not well-formulated in the Palatini formalism;

• f(R) models are susceptible to various instabilities, such as the unbounded

growth of the scalaron mass in high-curvature regimes, as well as Dolgov-

Kawasaki, ghost, and matter instabilities [51];

• Some f(R) models fail to pass local Solar System tests or do not yield viable

cosmological evolution, consistent with observations.

Finally, f(R) theories are often considered purely phenomenological, allowing for

various functional forms of f . In principle, an f(R) model needs only to satisfy local

gravity tests and align well with cosmological observations – particularly adhering

to the constraints outlined by Amendola et al. [44].
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4.4.1 Generalized Einstein-Hilbert action

In general, the extended class of f(R) theories is built upon the generalized Einstein-

Hilbert action

Sf =
1

2κ2

∫
d4x

√−g f(R) + SM[gµν , ϕM] , (4.21)

where f(R) is, a priori, an arbitrary function of the Ricci scalar R. The first term

in this action represents modifications to the geometric sector, while the second one

corresponds to the usual matter action SM, including both visible and potentially

DM). Notice that GR with a cosmological constant Λ corresponds to the particular

case f(R) = R− 2Λ.

4.4.2 Field equations: the metric formalism

By varying the action with respect to the metric gµν , we obtain the field equations

f,R(R)Rµν −
1

2
gµνf(R)− (∇µ∇ν − gµν □) f,R(R) = κ2Tµν , (4.22)

and the trace equation,

Rf,R(R)− 2f(R) + 3□f,R(R) = κ2T , (4.23)

where we have set f,R(R) ≡ df(R)/dR. Since ∇µTµν = 0 holds, the physical consis-

tence of Eqs. (4.22) requires that the left-hand side has no divergence. In fact, if we

define a modified Einstein tensor as

G̃µν ≡ f,R(R)Rµν −
1

2
gµνf(R)− (∇µ∇ν − gµν □) f,R(R) , (4.24)

we find that ∇µG̃µν = 0 ∀ν. Finally, note that because these equations involve

second-order derivatives of the Ricci scalar, which itself has second-order derivatives

of the metric tensor, these modified Einstein field equations form a set of fourth-

order equations on gµν .

In the absence of matter, Eqs. (4.22) simplifies to

Rf,R(R)− 2f(R) = 0 , (4.25)

where the positive real roots of this equation yield the de Sitter vacuum solutions,

which are foundational for describing both the early and late-time cosmic accelera-

tion phases. There will then be acceptable de Sitter solutions under the following

condition [51],
f,R(R)

f,RR(R)

∣∣∣∣
R=R∗

> R∗ , (4.26)
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where f,RR(R) ≡ d2f(R)/dR2 and R∗ is a positive real root of Eq. (4.25).

As we will later explore, metric f(R) gravity is a special class of scalar-tensor

theories, where the Brans-Dicke parameter vanishes. Ultimately, when f,RR(R) ̸= 0,

this introduces a new scalar degree of freedom, the scalaron, making f(R) grav-

ity a non-perturbative extension of Einstein’s gravity. In this framework, we view

f(R) gravity as a phenomenological semi-classical theory derived from an underlying

quantum theory, with degrees of freedom that remain inactive at lower curvature

scales (R ∼ R0).

4.4.3 Newtonian weak-field approximation

Given the success of Newtonian gravity in describing the observed inhomogeneities

at small scales and compact objects, f(R) gravity must recover Newton’s theory in

the weak-field limit, specially for R ≫ R0.

We start from a maximally symmetric vacuum solution that satisfies

Rλµνρ =
R0

12
(gλνgµρ − gλρgµν) , (4.27)

Rµν =
R0

4
gµν , (4.28)

where the constant scalar curvature R0 satisfies Eq. (4.25). To proceed, we derive

the Newtonian limit by performing a weak-field expansion around the symmetric

de Sitter vacuum. Expanding the field equations (4.22) to first-order around this

background yields

f,R(R0)δRµν −
1

4
f,RR(R0)R0gµνδR− 1

2
f(R0)

(
δgµν −

1

2
gµνδg

)
− f,RR(R0)

(
∇µ∇νδR +

1

2
gµν□δR

)
= κ2

(
Tµν −

1

2
gµνT

)
,

(4.29)

where

δRµν =
1

2
(∇µ∇ρδgρν +∇ν∇ρδgρµ) +

R0

3

(
δgµν −

1

4
gµνδg

)
− 1

2
(∇µ∇νδg +□δgµν) ,

(4.30)

and

δR = δgµνRµν + gµνδRµν . (4.31)

For consistency with Newtonian gravity, it is necessary that

f(R0) ∼ R0 ≈ 0 , (4.32)

at least at mass scales where Newton’s law has been verified, corresponding to a
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small mass scale. To obtain non-oscillatory attractive solutions, we further impose

R0 ≥ 0, f(R0) ≥ 0, f,R(R0) ≥ 0, and f,RR(R0) ≥ 0, which allow us to discard the

second and third terms of the equation as negligible in comparison to the others.

Thus, in the weak-field limit, we arrive at

f,R(R0)δRµν ≈ κ2
(
Tµν −

1

2
gµνT

)
, (4.33)

by requiring

f,R(R0) ∼ 1 , f,RR(R0) ≪ f,R0(R0) . (4.34)

It has long been recognized that retaining fourth-order derivative terms in Eq. (4.33)

can induce strong curvature effects on all length scales [49]. This emphasizes the

importance of properly setting the function f(R) and its derivatives to recover the

Newtonian limit effectively.

4.4.4 Palatini formalism

The metric formalism we have used so far in order to derive field equations of

a particular theory is not the only method; other approaches, like the Palatini

formalism, also exist.

The Palatini approach was first introduced by Einstein in 1925 [229] but became

known as such due to a historical misunderstanding [230]. The fundamental idea

behind this procedure is to treat the connection Γλµν , which appears in the Ricci

scalar, as an independent variable from the metric gµν . Physically, this means the

spacetime’s metric and geodesic structures are decoupled, and the connection is

distinct from the Levi-Civita connection.

In GR, the Palatini and metric formalisms yield equivalent field equations since

the field equations for Γλµν return the Levi-Civita connection of gµν . However, for

ETGs like f(R) gravity or scalar-tensor theories, these two approaches produce

distinct field equations and physical implications.

To apply the Palatini formalism to f(R) gravity, we introduce a modified Ricci

scalar, R̂ ≡ gµνR̂µν , where R̂µν is built using a non-metric connection, given as Γ̂λµν .

Replacing R with R̂ in the action (4.21) and varying with respect to gµν and Γ̂λµν

gives [34]

f,R̂(R̂)R̂µν −
1

2
gµνf(R̂) = κ2Tµν (4.35)

and

∇̂ρ

[√−gf,R̂(R̂)gµν
]
= 0 , (4.36)

where f,R̂(R̂) ≡ df(R̂)/dR̂, and ∇̂µ represents the covariant derivative based on Γ̂λµν .
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Solving the latter equation leads to the non-metric connection

Γ̂λµν = Γλµν +
1

2f,R̂

(
δλν∂µf,R̂ + δλµ∂νf,R̂ − gλρgµν∂ρf,R̂

)
. (4.37)

Therefore, the generalized Ricci tensor and scalar respectively give

R̂µν = Rµν +
3

2

∇µf,R̂∇νf,R̂
f 2
,R̂

− 1

f,R̂

(
∇µ∇νf,R̂ − gµν□f,R̂

)
(4.38)

and

R̂ = R +
3

2

∇µf,R̂∇µf,R̂
f,R̂

− 3
□f,R̂
f,R̂

. (4.39)

In the GR limit, where f,R̂ = 1, we recover the Levi-Civita connection, Γ̂λµν = Γλµν ,

along with R̂µν = Rµν and R̂ = R. This confirms that the metric and Palatini

approaches yield the same field equations for GR.

In the Palatini formalism, spacetime’s dual (metric and geodesic) structure is

naturally translated into a bimetric structure of the theory, where the second metric

is defined from Eq. (4.36) as ĝµν ≡ f,R̂(R̂)gµν . It is straightforward to check that

Γ̂λµν = (1/2)ĝλρ (∂µĝρν + ∂ν ĝµρ − ∂ρĝµν) [34, 205].

Though the Palatini formalism is a tool for studying ETGs (see Refs. [231–234]

for some investigations), we will proceed with the metric approach in this thesis for

several reasons. Physically, the metric formalism aligns better with foundational

principles:

1. The torsion-free condition in the metric approach allows setting Γλµν = 0 lo-

cally, which is compatible with EP; and

2. Affine and metric geodesics coincide, preserving covariance naturally.

Mathematically, the Levi-Civita connection uniquely satisfies metric compatibility

and naturally arises as the minimal-action solution in GR. Additionally, the Palatini

f(R) gravity faces significant issues:

1. Curvature singularities at star surfaces [235];

2. Conflicts with the standard model of particle physics [236, 237];

3. An ill-posed Cauchy problem, and [238]; and

4. The scalaron lacks dynamism, preventing chameleon mechanisms [239].

These challenges make the metric formalism more suitable for this thesis, as it is

more compatible with physical principles and observed phenomena.
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4.4.5 Equivalence between theories

In both the metric and Palatini formulations of f(R) theories, we find equivalence to

scalar-tensor theories, where derivatives of f(R) serve as the Brans-Dicke parameter.

Additionally, f(R) gravity can be translated into the GR framework minimally

coupled to a scalar field. This leads us to the Jordan and Einstein frames, linked

via Legendre and conformal transformations.

Starting from action (4.21) in the metric formalism, we introduce a new field, ς,

and rewrite the action equivalently as

Smet =
1

2κ2

∫
d4x

√−g [f (ς) + f,ς (ς) (R− ς)] + SM [gµν , ϕM] , (4.40)

where f,ς(ς) ≡ df(ς)/dς. Varying this action with respect to ς gives f,ςς(ς)(R−ς) = 0,

so for f,ςς(ς) ̸= 0, we find ς = R. Defining ψ ≡ f,ς(ς), we obtain

Smet =
1

2κ2

∫
d4x

√−g [ψR− V (ψ)] + SM [gµν , ϕM] , (4.41)

where V (ψ) ≡ ς(ψ)ψ − f (ς(ψ)). Notice that this action is equivalent to that in

Eq. (4.6) for scalar-tensor theories with Brans-Dicke parameter ω = 0.

In the Palatini formalism, the procedure is similar, substituting the metric Ricci

scalar R with the non-metric R̂ in action (4.40), so ς = R̂ when f,ςς(ς) ̸= 0. Using

Eq. (4.39), we obtain

SPal =
1

2κ2

∫
d4x

√−g
[
ψR +

3

2ψ
gµν∇µψ∇νψ − V (ψ)

]
+ SM [gµν , ϕM] , (4.42)

matching the action (4.6) for scalar-tensor theories with ω = −3/2.

The equivalence between different formulations of ETGs not only enriches the

theoretical understanding but also offers practical empirical benefits. Ultimately,

constraints derived from one framework can be translated into another. A prominent

example is the PPN expansion, which links the first PPN parameter, γPPN, to the

Brans-Dicke parameter, ω. The relationship,

γPPN =
ω + 1

ω + 2
(4.43)

yields γPPN = 1/2 for metric f(R) gravity and γPPN = −1 for Palatini f(R) gravity.

However, these theoretical values significantly differ from the Cassini constraint,

γPPN = 1 + (2.1 ± 2.3) × 10−5 ≈ 1, corresponding to ω > 40000 [240]. Such a

discrepancy could cast doubt on f(R) theories. However, in metric approach, the

chameleon-like screening mechanism provides a potential resolution, allowing the

theory to evade these constraints. We will delve further into this mechanism below.
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4.4.6 Einstein and Jordan frames

In f(R) theories, two key conformal representations are the Jordan and Einstein

frames. Eqs. (4.22) and (4.23) in the metric formalism, or equivalently Eqs. (4.35)

and (4.36) in the Palatini formalism, define the Jordan frame. Next, we derive the

Einstein frame for f(R) theories specifically in the metric formalism, leaving the

Palatini approach for a later section.

To proceed, we define a new set of variables y = f,R(R) and g
E
µν = ygµν , alongside

a scalar field redefinition y = exp
(
−
√

2κ2/3C
)
. This leads to an action that

describes Einstein gravity minimally coupled to a scalar field C ,

SE
met =

∫
d4x
√
−gE

[
RE

2κ2
− 1

2
(∇C )2 − V (C )

]
+ SM

[
gEµνy

−1, ϕM

]
, (4.44)

where RE is the scalar Ricci for the metric gEµν , and the modified Einstein tensor

takes the form

G̃µν = ∇µC∇νC − 1

2
gEµν∇σC∇σC − gEµνV (C ) , (4.45)

where the bare potential is defined as

V (C ) =
Rf,R(R)− f(R)

2κ2f 2
,R(R)

∣∣∣∣∣
R=R(C )

. (4.46)

In this setup, the Jordan frame corresponds to the variable set {gµν}, whereas the
Einstein frame corresponds to {y, gEµν}. The function R(C ) = R [y (C )] is obtained

by inverting the relation y = f,R(R), which is always possible if f,RR(R) ̸= 0 [205].

Eqs. (4.44) and (4.45) are expressed in what is called the Einstein frame.

The conformal coupling function is given by

A(C ) =
1√

f,R(R)
= exp (κβC ) , (4.47)

with the conformal coupling parameter β = 1/
√
6. Varying the action (4.44) with

respect to gEµν and C gives, respectively,

RE
µν = κ2

[
T E
µν +∇µC∇νC + V (C )gEµν

]
, (4.48)

and

□EC = V,C − TEA,C

A , (4.49)

where T E
µν ≡ TE

µν − 1
2
TEgEµν , V,C ≡ dV/dC , and A,C ≡ dA/dC . All quantities with

the superscript E represent values in the Einstein frame.
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Finally, we can rewrite the scalar field Eq. (4.49) in terms of an effective potential

Veff(C ) as

□EC =
dVeff(C )

dC
, (4.50)

where

Veff(C ) = V (C ) + ρE [A(C )− 1] . (4.51)

Here, ρE ≡ −TE/A is the conserved energy density in the Einstein frame, which is

independent of C , and matter is assumed to be non-relativistic.

4.4.7 Chameleon mechanism

In f(R) theories, the conformal coupling function A(C ) in Eq. (4.47) introduces

an additional, non-gravitational interaction mediated by the scalar field C , often

referred to as a fifth force. This force, due to the conformal coupling parameter

β ∼ 1, significantly affects particle motion, as matter is no longer purely subject

to gravitational interactions in the Einstein frame. The effective potential Veff(C )

imparts a variable effective mass to the scalar field, which strongly depends on the

ambient material density.

This density-dependent mass property is central to what is known as a chameleon

theory. In high-density environments, such as in the Solar System, the scalar field

becomes effectively heavy, thereby suppressing the fifth force and allowing the theory

to remain compatible with local gravitational constraints. Conversely, in low-density

environments, such as on cosmological scales, the field acquires a low effective mass,

enabling the fifth force to play a significant role, potentially driving cosmic accel-

eration. This adaptability of the scalar field’s mass across different densities allows

the theory to meet both local experimental constraints and large-scale cosmological

observations.

The behavior of the effective potential Veff(C ) is determined by the choice of the

function f(R). With an appropriate form for f(R), the potential may indeed exhibit

a minimum, given by
dVeff
dC

∣∣∣∣
C=Cmin

= 0 , (4.52)

where Cmin denotes the scalar field value at this minimum. Around this minimum,

the effective mass m2
eff of the field is given by

m2
eff =

d2Veff
dC 2

∣∣∣∣
C=Cmin

=
[
V,C C + κ2β2ρE exp (κβC )

]
C=Cmin

, (4.53)

where V,C C ≡ d2V/dC 2. This equation shows that the effective mass meff is

environment-dependent, varying with the local matter density ρE. For regions with
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high matter density, such as the Solar System, meff becomes large so that the fifth

force range is so small that it cannot be detected (meff > 10−3 eV for λ < 0.2mm).

In contrast, in low-density cosmological environments, meff is small, allowing C to

drive the observed cosmic acceleration [241].

For an f(R) theory to exhibit a chameleon mechanism, three specific conditions

must be satisfied simultaneously:

i. V,C < 0, meaning that the effective potential Veff has a minimum;

ii. V,C C > 0, implying that the effective mass squared m2
eff is positive; and

iii. V,C C C < 0, so that m2
eff increases with the environmental matter density ρE.

Using the definition f,R ≡ exp
(
−
√
2κ2/3C

)
, we can derive

V,C (C ) =
β

κ

R, fR − 2f

f 2
,R

, (4.54)

V,C C (C ) =
1

3

(
R

f,R
+

1

f,RR
− 4f

f 2
,R

)
, (4.55)

V,C C C (C ) =
2κβ

3

(
3

f,RR
+
f,Rf,RRR
f 3
,RR

+
R

f,R
− 8f

f 2
,R

)
. (4.56)

Merely hiding the scalar field in high-density regions is not enough to circumvent

the stringent constraints set by local gravity tests. The chameleon mechanism must

also effectively influence the test masses used in laboratory experiments, ensuring

that the scalar field remains concealed even under highly controlled conditions. As

a consequence, the form of f(R) is greatly constrained. Fortunately, f(R) theories

in the metric formalism naturally accommodate a chameleon mechanism.

In the Palatini formalism, the situation is problematic, particularly concerning

the chameleon mechanism. By making similar variable redefinitions as in the metric

formalism, where ŷ = f,R̂(R̂), ĝ
E
µν = ŷĝµν , and ŷ = exp

(
−
√

2κ2/3L
)
, the Palatini

f(R) gravity in the Einstein frame takes the form

SE
Pal =

∫
d4x
√

−ĝE
[
R̂E

2κ2
− V (L )

]
+ SM

[
ĝEµν ŷ

−1, ϕM

]
. (4.57)

From this action, the scalar field equation is derived as

2L VL + TE = 0 , (4.58)

where VL ≡ dVL /dL . This equation shows that the scalar field L is algebraically

linked to the trace of the energy-momentum tensor, TE. Consequently, the scalar
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field does not satisfy a wave-like equation (i.e., □EL = 0), and thus there is no well-

defined effective potential or mass for L . This lack of dynamism in the scalar field

makes it impossible for the Palatini formalism to support a chameleon mechanism.

Without a dynamic scalar field that can acquire a large effective mass in high-density

regions, Palatini f(R) gravity fails to implement the screening effects necessary to

meet local gravity test constraints [239]. This incompatibility with a chameleon-

like screening mechanism fundamentally limits the Palatini approach’s viability in

describing gravity at both cosmological and local scales.

4.4.8 Theoretical and observational bounds

From the analysis in previous subsections, it becomes evident that the mathematical

form of f(R) in modified gravity cannot be arbitrary. For these theories to be both

theoretically sound and phenomenologically viable, they must satisfy several critical

requirements [51]:

1. Stability in the interval of R relevant to cosmological interest, i.e.,

f,R(R) > 0 and f,RR(R) > 0; (4.59)

2. A correct Newtonian limit, i.e.,

|f(R)−R| ≪ R, |f,R(R)− 1| ≪ 1, Rf,RR(R) ≪ 1, (4.60)

for R ≫ R0, where R0 is the present-day curvature scalar;

3. Indistinguishability from GR at the current level of accuracy in laboratory

experiments and Solar System tests of gravity;

4. Recovery of GR in the high-curvature regime, i.e.,

lim
R→∞

f(R) = R− 2Λ, (4.61)

which also requires f,R(∞) = 1, implying 0 < f,R(R) < 1 for all R; and

5. A stable (or metastable) asymptotic de Sitter future.

In the first condition, f,R(R) > 0 ensures that gravity be attractive (i.e., gravitons

are not ghosts) while f,RR(R) > 0 prevents the scalaron from becoming a tachyon

in the high-curvature regime.The second and third conditions represent the need for

MTGs to reduce to Newton’s theory in the weak-field and slow-motion limit, where

gravity is well-constrained by the PPN expansion. The fourth condition accounts

for the fact that several primordial probes, such as the CMB, strongly agree with
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the robust predictions of the flat-ΛCDM model, such as the BBN, an early RD age,

and another middle MD age. Finally, the fifth condition ensures a stable de Sitter

future, which is essential for explaining the observed current accelerated expansion

of the universe.

4.5 f (R) cosmology

Before deriving cosmological dynamics within the framework of f(R) gravity, we

emphasize that all previously stated assumptions regarding the distribution of mat-

ter and the curvature of spatial three-section are preserved here. This approach

allows us to focus solely on modifications to the gravitational sector of the field

equations and to analyze their implications for cosmology. Essentially, we continue

to adhere to the CP, the flat RW metric, and energy-momentum conservation. Addi-

tionally, we shall adopt the metric formalism from this point onward, meaning that

all results derived henceforth will apply solely within the context of the Levi-Civita

metric compatible connection Γλµν .

4.5.1 Background dynamics

By substituting the RW metric from Eq. (3.46) into Eqs. (4.22), we obtain the

Friedmann equations

3H2 = κ2 (ρM + ρDE) , (4.62)

2Ḣ + 3H2 = −κ2 (PM + PDE) , (4.63)

where we have defined

κ2ρDE ≡ 1

2
[Rf,R(R)− f(R)]− 3Hḟ,R(R) + 3H2 [1− f,R(R)] , (4.64)

κ2PDE ≡ −1

2
[Rf,R(R)− f(R)] + 2Hḟ,R(R)− (2Ḣ + 3H2) [1− f,R(R)] + f̈,R(R) .

(4.65)

Here, the Ricci scalar is given by

R = 6
(
Ḣ + 2H2

)
, (4.66)

as in the GR case. Essentially, ρDE and PDE correspond to the energy density and

pressure contributions, respectively, arising from the modification in the gravita-

tional sector, R → f(R). Naturally, these terms depend on the specific form of the

f(R) function.

By dividing Eq. (4.65) by Eq. (4.64), we obtain wDE = PDE/ρDE, where wDE

functions as an equation of state for a barotropic fluid (though it is not, in fact, a

90



physical fluid). It can then be verified that this geometric component satisfies the

continuity equation,

ρ̇DE + 3H (ρDE + PDE) = 0 . (4.67)

In particular, for the GR case, where f(R) ≡ R− 2Λ, Eqs. (4.64) and (4.65) reduce

to those of a cosmological constant with PDE = −ρDE, implying wDE ≡ wΛ = −1.

By combining the first two equations, we arrive at the acceleration equation,

ä

a
= −κ

2

6
(ρeff + 3Peff) = −κ

2ρeff
6

(1 + 3weff) , (4.68)

where ρeff ≡ ρM + ρDE, Peff ≡ PM + PDE, and weff ≡ Peff/ρeff. Then, by combining

Eqs. (4.68) and (4.62), we obtain

weff = −1− 2Ḣ

3H2
. (4.69)

Notice that the current accelerated expansion can be achieved if Peff < −ρeff/3, or,
equivalently, weff < −1/3.

Finally, the deceleration parameter is given by

q (t) ≡ − ä

aH2
= −1− Ḣ

H2
, (4.70)

where H, Ḣ, and ä are solutions of Eqs. (4.62), (4.63), and (4.68), respectively.

Notice that R includes the first time derivative of H, implying it also involves

the second derivative with respect to the scale factor a(t). Since the Friedmann

equations contain the second time derivative of f , they are effectively fourth-order

in time with respect to the scale factor. To solve them, we thus require four initial

conditions: a(ti), ȧ(ti), ä(ti), and
...
a (ti).

4.5.2 Autonomous equations

The minimal cosmological model is known to have a series of well-established eras,

meaning that a generic model should start with a very short inflationary period,

followed by a RD epoch, then a MD epoch, and, finally, the current acceleration

phase. In this context, f(R) models that fit this cosmic history are referred to as

cosmologically viable (or simply viable). Consequently, the universe’s timeline, as

consistent with observations, constrains the possible forms of the f(R) function. We

will now examine the conditions under which an f(R) model is viable for reproducing

this cosmic chronology.
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For general f(R) models, it is convenient to use the dimensionless variables [44]:

x1 = − ḟ,R
Hf,R

, (4.71)

x2 = − f

6H2f,R
, (4.72)

x3 =
R

6H2
=

Ḣ

H2
+ 2 , (4.73)

x4 =
κ2ρr

3H2f,R
. (4.74)

From Eq. (4.62), we obtain the following algebraic identity,

Ω̃m ≡ κ2ρm
3H2f,R

= 1− x1 − x2 − x3 − x4 . (4.75)

The equations of motion then follow straightforwardly:

dx1
dN

= −1− x3 − 3x2 + x21 − x1x3 + x4 , (4.76)

dx2
dN

=
x1x3
p

− x2 (2x3 − 4− x1) , (4.77)

dx3
dN

= −x1x3
p

− 2x3 (x3 − 2) , (4.78)

dx4
dN

= −2x3x4 + x1x4 , (4.79)

where N ≡ ln a and

p ≡ d log f,R
d logR

=
Rf,RR
f,R

, (4.80)

s ≡ − d log f

d logR
= −Rf,R

f
=
x3
x2
. (4.81)

Since Eq. (4.80) allows us to write R in terms of x3/x2, and Eq. (4.81) can also be

rewritten in terms of this ratio, we find that p = p(s).

Finally, it is convenient to express wDE and weff as

wDE =
1

3

1− x4f,R − 2x3
1− f,R (1− x1 − x2 − x3)

, (4.82)

weff = −1

3
(2x3 − 1) , (4.83)

Notice that in Ref. [44], the term f,R in the first of the above equations is always

divided by a term referred to as F0. In our approach here, F0 = 1.
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4.5.3 Critical points

The cosmological dynamics can then be analyzed through the analytical properties of

the phase space associated with the system of equations (4.76) to (4.79). For a more

pedagogical approach, we divide the analysis into two parts (following Ref. [44]).

First, we disregard radiation component (x4 = 0) and then reconsider it.

In the absence of radiation, the critical points of the system for any p(s) are:

P1 : (x1, x2, x3) = (0,−1, 2), Ω̃m = 0, weff = −1 , (4.84)

P2 : (x1, x2, x3) = (−1, 0, 0), Ω̃m = 2, weff = 1/3 , (4.85)

P3 : (x1, x2, x3) = (1, 0, 0), Ω̃m = 0, weff = 1/3 , (4.86)

P4 : (x1, x2, x3) = (−4, 5, 0), Ω̃m = 0, weff = 1/3 , (4.87)

P5 : (x1, x2, x3) =

(
3p

xp
,− yp

2x2p
,
yp
2xp

)
, Ω̃m =

z̄p
2x2p

, weff = − p

xp
, (4.88)

P6 : (x1, x2, x3) =

(
2x̄p
zp
,
ȳp
pzp

,−xpȳp
pzp

)
, Ω̃m = 0, weff = − jp

3pzp
, (4.89)

where xp ≡ 1+p, yp ≡ 1+4p, zp ≡ 1+2p, x̄p ≡ 1−p, ȳp ≡ 1−4p, z̄p ≡ 2−3p−8p2,

and jp ≡ 2− 5p− 6p2. Broadly speaking, we examine the fixed points in light of the

behavior of the effective EoS parameter, weff. We select solutions that produce both

a standard MD epoch (i.e., weff = 0 → a ∝ t2/3, or x3 = 1/2) and a late acceleration

phase. Starting with the MD era, the only possible solution is p = 0 (P5); the other

possibility, m = −(5±
√
73)/12 (P6), is ruled out because it has Ω̃m = 0, which does

not yield a standard MD epoch when a non-relativistic fluid is in charge [242, 243].

On the other hand, only P1, P5, and P6 can produce accelerated solutions. Thus,

an f(R) theory compatible with observations would have trajectories passing near

P5 with p close to zero and resting on an accelerated attractor [44].

In what follows, we describe the stability of fixed points by classifying them as

attractors, saddles, or repulsors in phase space, using linearization techniques.

• P1: With weff = −1, this point corresponds to de Sitter solutions (Ḣ = 0),

and has eigenvalues

−3 ,
−3

2
±
√
25− 16/p1

2
, (4.90)

where p1 = p(s = −2). Consequently, P1 is stable for 0 < p1 ≤ 1 and a saddle

point otherwise.

• P2: This point is characterized by a ψ-matter dominated epoch (ψMDE) in

which a field ψ and matter coexist with constant energy fractions. Its eigen-

values are given by

−2 ,
1

2

(
E2 ±

√
E 2
2 − 4F2

)
, (4.91)
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where

E2 ≡ 7 +
1

p2
− s(1 + s)

p22

dp2
ds

, F2 ≡ 12 +
3

p2
− s(3 + 4s)

p22

dp2
ds

. (4.92)

If p is constant, the eigenvalues reduce to −2, 3, 4 + 1/p2 and P2 is a saddle

point. However, it is a stable node on the subspace x3 = sx2 for −1/4 < p < 0.

The necessary and sufficient condition for P2 to exist is

lim
x2,3→0

x3
p2

= 0 , (4.93)

corresponding to
f,R

H2f,RR
→ 0 for R

H2 → 0 and f
H2f,R

→ 0. Thus, the incorrect

MD era is generally intrinsic to f(R) models.

• P3: Similar to P2, this point is characterized by a kinetic epoch but with a

vanished matter energy fraction. The eigenvalues are

2 ,
1

2

(
E3 ±

√
E 2
3 − 4F3

)
, (4.94)

where

E3 ≡ 9− 1

p3
+
s(1 + s)

p23

dp3
ds

, F3 ≡ 20− 5

p3
+
s(5 + 4s)

p23

dp3
ds

. (4.95)

If p = const, the eigenvalues reduce to 2, 5, 4−1/p3. In this case, P3 is a saddle

point for 0 ≤ p3 ≤ 1/4 and unstable otherwise.

• P4: This point is similar to P3. It has eigenvalues given by

−5 , −3 , 4

(
1 +

1

p4

)
. (4.96)

It is stable within the interval −1 < p4 < 0 and a saddle otherwise. Neither

P3 nor P4 can represent the MD or accelerated epochs.

• P5: This point corresponds to scaling solutions where the ratio Ω̃m/ΩDE is

constant. A standard MD epoch with a ∝ t2/3 and Ω̃m = 1 can be obtained

from this point by taking m5 → 0. The necessary condition for P5 to exist as

an exact standard MD era is

p(s = −1) = 0 . (4.97)
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The eigenvalues of this point are

3

(
1 +

dp5
ds

)
,
−3p5 ±

√
p5(256p35 + 160p25 − 31p5 − 16)

4p5(p5 + 1)
. (4.98)

In the limit |m5| ≪ 1, these eigenvalues reduce to

3

(
1 +

dp5
ds

)
, −3

4
±
√

− 1

p5
. (4.99)

Generally, models with m5 < 0 are not viable, except for a very narrow range

of initial conditions. For 0 < m5 < 0.327 and dp5/ds > −1, P5 can be a

saddle point with damped oscillation, allowing the universe to evolve toward

P5 and then transition to a late acceleration. Since x3/x2 = −p(s) − 1, i.e.,

p(s) = −s− 1, the conditions for a saddle MD epoch with damped oscillation

are

p(s ≤ −1) > 0 ,
dp

ds
(s ≤ −1) > −1 . (4.100)

These conditions supplement Eq. (4.97).

• P6: This point represents a curvature-dominated point with weff = weff(p). Its

eigenvalues are

−4 +
1

p6
,
2− 3p6 − 8p26
p6(1 + 2p6)

, −2 (p26 − 1) (1 + dp6/ds)

p6(1 + 2p6)
. (4.101)

The stability of P6 depends on p6 and dp6/ds . Notably, P6 coincides with P1

for m6 = 1 and transitions to P6 → (−1, 0, 2) with weff → −1 as p6 → ±∞.

P6 is stable and accelerated under four conditions. When dp6/ds > −1, P6 is

stable and accelerated under:

1. For p6 < −1+
√
3

2
, it is accelerated but not phantom (weff > −1);

2. For −1
2
< p6 < 0, it is strongly phantom with weff < −7.6; and

3. For p6 ≥ 1, it is slightly phantom with −1.07 < weff ≤ −1.

Additionally, P6 is stable and accelerated when dp6/ds < −1 under:

4. For
√
3−1
2

< p6 < 1, it is a non-phantom (weff > −1).

In summary, asymptotic acceleration in f(R) models excludes an EoS within

−7.6 < weff < 1.07 [44].

Incorporating radiation modifies the fixed points by introducing two additional

points, P7 and P8, while retaining the original fixed points P1 to P6. Here is a
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breakdown of these two new points and their implications:

P7 : (x1, x2, x3, x4) = (0, 0, 0, 1), Ω̃m = 0, weff = 1/3 , (4.102)

P8 : (x1, x2, x3, x4) =

(
4p

xp
,−2p

x2p
,
2p

xp
,
hp
x2p

)
, Ω̃m = 0, weff = wp , (4.103)

where hp ≡ 1 − 2p − 5p2 and wp ≡ (1 − 3p)/(3 + 3p). Notably, P7 corresponds

to a standard radiation point. When p is constant, it has eigenvalues of 1, 4, 4,−1,

indicating that P7 is a saddle point in this case. In contrast, P8 represents a new ψ-

RD epoch with non-vanishing DE. Observations from BBN constrain weff to be close

to 1/3, so P8 can yield an acceptable RD epoch only for p8 ≈ 0. The eigenvalues of

P8 are

1 , 4

(
1 +

dp8
ds

)
,
p8 − 1±

√
81p28 + 30p8 − 15

2(p8 + 1)
. (4.104)

For p8 → 0, the last two eigenvalues are complex with negative real parts, indicating

that P8 is a saddle point around the radiation point. Consequently, the solutions

eventually repel away from the RD era and transition to one of the previously

mentioned fixed points. Additionally, it is noticed that P8 (like P5) lies on the line

p(s) = −s − 1. Therefore, if the condition for the existence of the matter point

P5 (i.e., p ≈ 0 and ≈ −1) is satisfied, a radiation point P8 exists within the same

region.

This fixed-point analysis enables us to trace the evolutionary path of the f(R)

models. Within this framework, a viable cosmological trajectory begins near the

radiation point P8 with p ≈ 0, then transitions to the matter point P5 with p ≈ 0,

and ultimately approaches one of the accelerated points mentioned above [44].

4.5.4 f(R) classification and viable models

The preceding discussion, based on the research outlined in Ref. [44], indicates that

there are several conditions that must be met for an f(R) model to be cosmologically

viable. Essentially, the geometrical properties of the p(s) curve in the plane (s, p)

and its intersections with the critical line p = −s − 1 allow us to classify the f(R)

models into four distinct classes.

• Class I: This class encompasses all cases where the curve p(s) does not connect

the accelerated attractor with the standard matter point (s, p) = (−1, 0). In-

stead, the solutions either reach the fixed point ψMDE or bypass it completely,

transitioning into the final attractor without experiencing any MD epoch.

• Class II: This class includes models where the curve p(s) connects the upper

vicinity of the standard matter point (s, p) = (−1, 0), satisfying p > 0 and
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dp5/ds > −1, to the point P1 with 0 < p(s = −2) ≤ 1, or asymptotically

approaches P6 as s→ ±∞.

• Class III: This class is characterized by a very fast transient MD era that

can only occur within a narrow range of initial conditions. These models are

known to cross the critical line at −1/2 < p < 0 and generally experience a MD

epoch followed by a strongly phantom accelerated epoch, where weff → −∞
as p→ −0.

• Class IV: In this class, the curve p(s) connects the upper vicinity of the stan-

dard matter point (s, p) = (−1, 0), satisfying p > 0 and dp5/ds > −1, to the

critical line p = −s− 1 with dp6/ds > −1.

The models belonging to Classes I and III can be discarded immediately for the

following reasons. First, the point P2 represents a ψMDE with an incorrect evolution

of the scale factor, given by a ∝ t1/2. Second, a stable and sufficiently long MD

epoch is necessary for structure formation in the universe. Additionally, a strongly

phantom acceleration, such as weff ≈ −7.6 (which implies ΩDE ≃ weff,0/ΩDE,0 is even

smaller) are generally discarded by observations. On the other hand, the models

from classes II and IV are, in principle, cosmologically viable, as they possess a

sufficiently long MD epoch connected to either a late-time de Sitter expansion (class

II) or a late-time non-phantom acceleration with weff > −1 (class IV).

Of course, our discussion thus far has focused solely on the critical points; we

cannot exclude the possibility that unique trajectories with some specific initial

conditions could reproduce an acceptable cosmology. Consequently, a thorough

numerical analysis is required, conducted on a case-by-case basis. Broadly speaking,

the f(R) models should satisfy the following conditions:

1. A suitable MD era necessary for structure formation, satisfying

p(s) ≈ +0 ,
dp(s)

ds
> −1 , (4.105)

at s = −1; and

2. A subsequent accelerated phase such that

0 ≤ p(s) ≤ 1 (4.106)

at s = −2, or

p(s) = −s− 1 ,

√
3− 1

2
< p(s) ≤ 1 ,

dp(s)

ds
< −1 . (4.107)
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The ΛCDM model corresponds to the straight line p = 0, ∀s. Since the viable f(R)
models are those that approach the ΛCDM at high-curvature (i.e., when R ≫ R0),

p(s) must be close to zero during the MD epoch, as indicated by the first condition

in Eq. (4.105). The second condition is required to connect the MD epoch to the

current acceleration age; the constraints in Eq. (4.106) indicate a purely de Sitter

vacuum (weff = −1), while Eqs. (4.107) corresponds to a non-phantom attractor

(weff > −1). Therefore, regarding Eqs. (4.106) and (4.107), the f(R) models need

to satisfy only one of these conditions.

4.5.5 f(R) cosmological perturbations

As with the general relativistic theory of cosmological perturbation, the idea here is

to add perturbations to the uniformly smoothed background so that we can describe

the evolution of inhomogeneities and the growth of structures in light of the f(R)

theories of modified gravity. As in the GR case, we shall only consider here the

first-order terms of the perturbations [62, 63, 244, 245]. The non-linear theory of

cosmological perturbations can be reviewed from Refs. [246–248].

The first steps, such as establishing metric fluctuations (δgµν) and material con-

tent fluctuations (δTµν), defining invariant quantities (ΦB, ΨB), and choosing the

work gauge (Newtonian gauge) are identical to those in the GR case. However, we

shall also need to consider small (linear) fluctuations around f , such that

f = f̄ + δf , |δf | ≪ f̄ . (4.108)

Next, the geometry fluctuations must be incorporated into the perturbation of the

modified Einstein tensor, δG̃µν , so that the perturbed f(R) field equations, assuming

zero anisotropic stress (Πij = 0), are given in the Newtonian gauge by [35]

3H(HΦ + Ψ̇)− a−2∇2Ψ =
1

2f,R

[
3Hδḟ,R −

(
3H2 + 3Ḣ + a−2∇2

)
δf,R

−3ḟ,R

(
HΦ + Ψ̇

)
− 3Hḟ,RΦ− κ2ρ̄δ

]
,

(4.109)

HΦ + Ψ̇ =
1

2f,R

(
δḟ,R −Hδf,R − ḟ,RΦ− κ2δq

)
, (4.110)

Ψ− Φ =
δf,R
f,R

, (4.111)

3ḢΦ + a−2∇2Φ =
1

2f,R

[
3 δf̈,R + 3Hδḟ,R −

(
6H2 + a−2∇2

)
δf,R − 3ḟ,RΦ̇

−3ḟ,R

(
HΦ + Ψ̇

)
−
(
3Hḟ,R − 6f̈,R

)
Φ + κ2 (ρ̄δ + δP )

]
,

(4.112)

98



δf̈R + 3HδḟR −
(
a−2∇2 −M2

s

)
δfR = ḟR

(
3HΦ + 3Ψ̇ + Φ̇

)
+
(
2f̈R + 3HḟR

)
Φ

+
1

3
κ2 (ρ̄δ − 3δP ) ,

(4.113)

In order to derive Eq. (4.113), we have used the squared scalaron mass

M2
s ≡ 1

3

(
f,R
f,RR

−R

)
, (4.114)

along with the relation δf,R = f,RR δR, where

δR = −2
[
3
(
2ḢΦ +HΦ̇ + Ψ̈

)
+ 12H

(
HΦ + Ψ̇

)
+ a−2

(
∇2Φ− 2∇2Ψ

)]
. (4.115)

The first thing we must realize is that Eqs. (4.109), (4.110), and (4.111) fully

recover the perturbed Einstein equations (3.75), (3.76), and (3.77), respectively, in

the GR regime f(R) = R − 2Λ and Πij = 0 (recalling that the Einstein linearized

equations have been written in terms of the conformal time dη ≡ dt/a). Notice that

Eq. (4.111) for the f(R) case tell us that Ψ ̸= Φ even in the absence of anisotropic

stress. This fact enable us to detect possible deviations from GR by measuring

Ψ/Φ ̸= 1 with some precision. After some manipulations in order to make the

terms Ψ̈ and ∇2Ψ appear, Eq. (4.112) recovers Eq. (3.78) in the GR limit. Finally,

Eq. (4.113) implies a pure adiabatic fluctuations case, as shown in Eq. (3.87), with

c2s = 1/3 in the same regime. In the most general case of f(R) gravity, one observes a

particular mass termM2
s defined in Eq. (4.114). Using the scalar-tensor formulation

of f(R) theories, we see that this term is related to the scalaron effective mass m2
eff,

defined in Eq. (4.53). Indeed, Ms = meff.

4.5.6 Modified contrast equation and growth rate

Let us consider the perturbations of non-relativistic matter with negligible pressure

(Pm = 0). In this way, Eqs. (3.73) and (3.74) yield in Fourier space

δρ̇m + 3Hδρm = ρ̄

(
3Ψ̇− k2

a2
v

)
, (4.116)

v̇ = Φ , (4.117)

respectively, where we have used the matter continuity equation, ˙̄ρm + 3Hρ̄m = 0,

in the second line. The matter density contrast, δm = δρm/ρ̄m + 3Hv, then obeys

the following equation, obtained from Eqs. (4.116) and (4.117):

δ̈m + 2Hδ̇m +
k2

a2
Φ = 3ẌB + 6HẊB , (4.118)
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where XB ≡ Ψ+Hv .

To obtain the equation that approximately describes the evolution of pressureless

matter perturbations, let us consider the sub-horizon approximation, where k ≫ aH.

Another useful tool when deriving such an equation is the so-called quasi-static

approximation, under which the dominant terms in Eqs. (4.109)-(4.113) and (4.118)

correspond to those including k2/a2, δm, and M2
s . It follows from Eqs. (4.109)

and (4.111) that

Ψ ≃ 1

2f,R

(
δf,R − a2

k2
κ2ρ̄mδm

)
, Φ ≃ − 1

2f,R

(
δf,R +

a2

k2
κ2ρ̄mδm

)
, (4.119)

and from Eq. (4.113) that (
k2

a2
+M2

s

)
δf,R ≃ 1

3
κ2ρ̄mδm . (4.120)

Therefore, we have
k2

a2
Ψ ≃ −κ

2ρ̄mδm
2f,R

2 + 3M2
s a

2/k2

3 (1 +M2
s a

2/k2)
, (4.121)

and
k2

a2
Φ ≃ −κ

2ρ̄mδm
2f,R

4 + 3M2
s a

2/k2

3 (1 +M2
s a

2/k2)
. (4.122)

We can also define the effective potential Φeff ≡ (Φ + Ψ)/2. From Eqs. (4.121)

and (4.122), we obtain

Φeff ≃ − κ2

2f,R

a2

k2
ρ̄mδm . (4.123)

This quantity characterizes the light-ray deviation, which is related to the integrated

Sachs-Wolfe (ISW) effect observed through CMB and weak lensing observations.

Neglecting the right-hand side of Eq. (4.118) relative to its left-hand side, and

using Eq. (4.122), we finally obtain

δ̈m + 2Hδ̇m − 4πGeff ρ̄mδm ≃ 0 , (4.124)

where Geff is the effective gravitational constant, defined as

Geff ≡ G

f,R

1 + 4 p
(

k2

a2R

)
1 + 3 p

(
k2

a2R

) . (4.125)

In obtaining this expression for Geff, we have used the fact that M2
s = R

3

(
1
p
+ 1
)
.

We would like to recall that the viable f(R) models are constructed to have

a large Ms in the region of high density R ≫ R0. Throughout the RD and deep

MD eras, we should have p ≪ 1 so that M2
s ≫ R. If p reaches the order of 0.1
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in the present epoch instead, then we should have M2
s ∼ H2

0 . The GR regime is

characterized by the condition M2
s ≫ k2/a2, in which the effective gravitational

constant has the asymptotic form Geff ≃ G/f,R. Since f,R ≃ 1 in this limit, we

should have Geff ≃ G and, therefore, Eq. (4.124) recovers Eq. (3.90). In contrast,

when M2
s ≪ k2/a2, resulting in Geff ≃ 4G/3f,R, this is known as the scalar-tensor

regime, where the evolution of the matter density fluctuations is non-standard. The

transition from one regime to the other is characterized by the conditionM2
s = k2/a2

and can occur during the MD phase for the wavenumbers relevant to the matter

power spectrum [35].
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Chapter 5

f (R) models: Numerical Solutions

& Observational Constraints

Everything we have discussed thus far applies to any f(R) function. In this chapter,

we focus on three specific forms of viable f(R) known as the Appleby-Battye [49–51],

Hu-Sawicki [46], and Starobinsky [47] models. In summary, we construct systems of

coupled differential equations for each of these models and solve them numerically

using the Python programming language. In doing so, we utilize the solve ivp routine

from the scipy library and alternate between the numerical methods LSODA1 and

RK482. Next, we present three sets of cosmological observations: the Hubble rate

H(z) measurements obtained via the cosmic chronometer technique, the growth

rate [fσ8](z) measurements derived from redshift-space distortion, and the apparent

magnitudesmB(z) of SNe Ia cataloged by the Pantheon+ and SH0ES collaborations.

We then constrain each model’s parameters via MCMC simulations. Finally, we

compare two of these models using AIC statistics, alongside the concordance flat-

ΛCDM model. Our findings on the R2-AB model are published in Ref. [249].

5.1 Three viable f (R) models

A number of f(R) models available in the literature fulfill all the requirements

discussed in the previous chapter and produce a cosmic evolution consistent with

observations. Such f(R) cosmological dynamics closely resemble the ΛCDM model

and are practically indistinguishable from it at the background level in most cases.

In the high-curvature regime or in the very early universe, where R ≫ R0, these

models fully recover the ΛCDM phenomenology.

1LSODA is the acronym for livermore solver for ordinary differential equations. This solver
differs from the others since it switches automatically between the stiff BDF and the nonstiff
Adams methods. So the user does not need to determine whether the problem is stiff or not.

2RK48 means the explicit Runge-Kutta method of order 5(4), where the error is controlled by
assuming fourth-order method accuracy, but steps are taken using the fifth-order formula.
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5.1.1 Appleby-Battye model

One requirement imposed on f(R) theories is that they should appropriately mimic

ΛCDM behavior in the high-curvature regime, where gravity is well constrained by

both BBN and CMB observations. Essentially, this condition requires that f,R → 1

as R → ∞. Additionally, since we must ensure the positivity of the first derivative

of f(R) with respect to R, we conclude that f,R must be an increasing function of

R, satisfying

0 < f,R(R) < 1. (5.1)

Since the hyperbolic tangent function tanh (x) is restricted to the interval [−1, 1], a

simple choice satisfying Eq. (5.1) is to set

f,R(R) =
1

2
[1 + tanh (ϵ1R− b)] , (5.2)

for any ϵ1 > 0. Integrating this expression with respect to R, we obtain

f(R) =
R

2
+
ϵAB

2
ln

[
cosh

(
R

ϵAB

− b

)]
+ ϵ2 , (5.3)

where ϵAB ≡ 1/ϵ1 and ϵ2 is an integration constant. Because we seek f(R) models

that exhibit late-time accelerating solutions in the absence of DE, we need to impose

that f(0) = 0. Thus, we find

ϵ2 = −ϵAB

2
ln (cosh b). (5.4)

Substituting this into Eq. (5.3), we arrived at the Appleby-Battye (AB) model [49]:

f IAB(R) ≡
R

2
+
ϵAB

2
ln

cosh
(

R
ϵAB

− b
)

cosh b

 , (5.5)

where ϵAB and b are the model parameters, two more than the flat-ΛCDM model.

For this model, we have f,R(R0) ∼ 1 and f(R0) ∼ R0 ≪ f,R(R0), which means

it satisfy the condition in Eq. (4.32) as well as the first condition in Eq. (4.34).

However, the second condition, f,RR(R0) ≪ f,R(R0), required for an appropriate

Newtonian limit, is not generally satisfied. From Eq. (5.2), we find the second

derivative of f(R) to be

f,RR(R) =
1

2ϵAB

sech2

(
R

ϵAB

− b

)
. (5.6)

Thus, the condition f,RR(R0) ≪ 1 is satisfied if R0/ϵAB − b ≫ 1. This condition

can be used in order to fix ϵAB in terms of R0 and b. To do so, we first expand
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f(R) around the de Sitter minimum, R ∼ R0 ≡ Rvac, for large yAB ≡ R/ϵAB − b,

obtaining [49]

f(R) ≈ R− ϵAB

2
ln
(
1 + e2b

)
+
ϵAB

2
e−2yAB + O(e−4yAB) , (5.7)

f,R(R) ≈ 1− e−2yAB + O(e−4yAB) , (5.8)

f,RR(R) ≈ 2

ϵAB

e−2yAB + O(e−4yAB) . (5.9)

In this way, the vacuum field equations (4.25) give us

ϵAB =
Rvac

b+ ln ( 2 cosh b )
, (5.10)

Rvac ≡ 12H2
0 . (5.11)

The equations above tell us that the only free parameter of the AB model is b, whose

allowed range will be determined below. Furthermore, GR is fully recovered in the

limit b→ ∞ with Λ ≡ Rvac/4.

The f(R) function defined in Eq. (5.5) and its first derivative with respect to

the Ricci scalar, R, are equivalent to writing

f IAB(R) = R− Rvac

2
+
ϵAB

2
ln

[
1 + e

−2
(

R
ϵAB

−b
)]

(5.12)

and

f IAB,R(R) = 1−
[
1 + e

2
(

R
ϵAB

−b
)]−1

, (5.13)

respectively. Thus, the vacuum field equations – i.e., Eqs. (4.22) – for the AB model

correspond to

Q(y) ≡ y + ln
[
1 + e−2(y−b)]+ y

1 + e2(y−b)
− b− ln (2 cosh b) = 0 , (5.14)

where y ≡ R/ϵAB. A stable de Sitter vacuum exists if dQ
dy
(y0) = 0 has a solution

y = y0 > 1 for which d2Q
dy2

(y0) > 0 and Q(y0) ≤ 0 [250]. The authors of Refs. [51, 250]

studied a generalized version of this model in which a parameter g ∈
[
0, 1

2

]
was

introduced, so that the last four terms in Eq. (5.14) are multiplied by 2g. They then

derived the following approximate relation between g and b:

1

4
+

0.28

(b− 0.46)0.81
≤ g . (5.15)

Since the model under investigation here corresponds to g = 1/2, we determine that

b ≥ 1.6 is required to achieve a stable de Sitter solution [51, 250, 251].
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5.1.2 Hu-Sawicki model

The second f(R) theory refers to the usual class of power-law models, known as the

Hu-Sawicki (HS) models, described by [46]

f IHS(R) = R−m2
0

c1(R/m
2
0)
n

c2(R/m2
0)
n + 1

, (5.16)

with n > 0, and c1 and c2 dimensionless parameters. This class of theories satisfies

the requirements where f(R → ∞) = constant and f(R → 0) = 0, ensuring the

appropriate ΛCDM phenomenology as a limiting case but with no true cosmological

constant. The curvature scale m0 is defined as

m2
0 ≡

κ2ρ0
3

= H2
0Ωm,0 . (5.17)

In the high-curvature regime, R ≫ m2
0, Eq. (5.16) can be expanded as

lim
m2

0/R→0
f(R) ≈ R− c1

c2
m2

0 +
c1
c22
m2

0

(
m2

0

R

)n
. (5.18)

Thus, the GR limiting case, for which c1/c
2
2 → 0 at fixed c1/c2, corresponds to a no

true cosmological constant, given by

Λ ≡ m2
0c1
2c2

. (5.19)

We can then use Eq. (5.17) along with Λ = 3H2
0 (1− Ωm,0) to derive the relation

c1 = 6c2
1− Ωm,0

Ωm,0

, (5.20)

which links the model parameters c1 to c2. This implies that the true free parameters

of this models are 2: n and c2 (or n and c1). This results in one more free parameter

than in the AB model and two more than in the flat-ΛCDM model.

The expression in Eq. (5.16) can be rewritten in an alternative form

f IHS(R) = R− 2Λ
Rn

Rn + µ2n
, (5.21)

where Λ is defined by Eq. (5.19) and

µ2 ≡ m2
0 c

−1/n
2 . (5.22)

The number of free extra parameters remains 2, namely n and µ2. In this framework,

the ΛCDM model is recovered in the limit µ2 → 0.
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5.1.3 Starobinsky model

The third and last theory studied in this thesis is also a class of power-law f(R)

models, proposed by Starobinsky, defined as [47]

f IS(R) = R + λSRS

[(
1 +

R2

R2
S

)−n
− 1

]
, (5.23)

where n, λS > 0 and RS ∼ R0 is the present curvature scale. Similar to the first

two models, this class also satisfies f(0) = 0, meaning the cosmological constant

vanishes in flat spacetime.

In the high-curvature regime, R ≫ RS, the functional form in Eq. (5.23) can be

approximated as

lim
R/RS→0

f I
S(R) ≈ R− λSRS + λSRS

(
R

RS

)−2n

, (5.24)

from which we can identify

Λ ≡ λSRS

2
, (5.25)

and thus obtain

RS =
6H2

0 (1− Ωm,0)

λS
. (5.26)

In this form, n, λS and RS are free parameters, although this relation shows that the

actual free parameters of this class are two: n and λS (or n and RS). This matches

the number of free parameters in the HS model, giving it one more than the AB

model and two more than the flat-ΛCDM model.

On the other hand, the late-time asymptotic de Sitter solution has a curvature

given by R ≡ R1 ≡ x̄1RS, where R1 = constant and x̄1 > 0 is the maximal solution

of the equation [47, 252]

λS =
x̄ (1 + x̄2)

n+1

2
[
(1 + x̄2)n+1 − 1− (n+ 1)x̄2

] . (5.27)

It satisfies the inequality x̄1 < 2λS, so that Λ(R1) = R1/4 < Λ(∞). Finally, the

stability condition of this future de Sitter solution, f,R(R1) > R1f,RR(R1), imposes

the following constraint on x̄1 [47, 252]:

(
1 + x̄21

)2+n
> 1 + (n+ 2)x̄21 + (n+ 1)(2n+ 1)x̄41 . (5.28)

For each n, there exists a corresponding x̄1 that marginally satisfies Eq. (5.28), pro-

viding the minimum allowed value of λS. Table 5.1 summarizes the minimum values

for both x̄1 and λS given n, obtained numerically from Eqs. (5.27) and (5.28) [252].
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n x̄1,min λS,min

1
√
3 8/(3

√
3)

2 1.267 0.944
3 1.041 0.726
4 0.903 0.608

Table 5.1: Minimum allowed values of x̄1 and λS, given n, as obtained from the stable
de Sitter future conditions in Eqs. (5.27) and (5.28), for the Starobinsky model.

5.2 High curvature regime

As discussed in the previous chapter, f(R) models must reproduce GR in the high-

curvature limit and in the very early universe, R → ∞. Thus, we expect only small

corrections to GR for R much larger than the present curvature R0. This implies

that in the limit R ≫ R0, f(R) models can be expanded as

f(R) ≃ R− 2Λ + Ξ(R) , (5.29)

where the functions Ξ(R) represent corrections to GR theory. For the AB, HS, and

Starobinsky models, it can be shown that [46, 47, 51]

Ξ(R) =


(ϵAB/2) exp [− (R/ϵAB − b)] (AB)

(c1m
2
0/c2) (R/m

2
0)

−n
(HS)

λSRS (R/RS)
−2n (Starobinsky)

. (5.30)

In addition to differing in their number of free parameters, the AB, HS, and Starobin-

sky models differ in the type of corrections they introduce to GR: the AB model has

exponentially suppressed corrections, while both the HS and Starobinsky models

contain power-law-type corrections to GR.

5.3 Weak curvature singularity

A sudden weak curvature singularity is known to form generically when f,RR(R)

becomes zero for some finite value of R, such that the condition f,RR(R) > 0 is

marginally violated. This leads to two more elementary problems: an unbounded

growth of the scalaron mass, which can be approximated by [35]

M2
s ≈ 1

3f,RR(R)
, (5.31)
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for R ≫ Rvac, and an undesired overabundance of this particle at high curvatures.

In other words, this means that the scalaron decouples with the theory as R grows

indefinitely at R ≫ Rvac [50, 51]. For the models in Eqs. (5.5), (5.16), and (5.23),

as well as many others discussed in the literature, this behavior occurs for values of

R within the range of cosmological interest, highlighting an incompleteness of these

models.

Let us now examine the second derivative with respect to the curvature scalar

R for the three f(R) models. It can be shown that

f,RR(R) ∝


exp (−2R/ϵAB) (AB)

(R/m2
0)

−(n+2)
(HS)

(R/RS)
−2(n+1) (Starobinsky)

, (5.32)

which indicates that f,RR(R) decrease either exponentially (in the AB model) or via

a power-law (in both the HS and Starobinsky model). Since f,RR(R) vanishes much

more rapidly in the AB model than in the HS and Starobinsky cases, we expect that

the singularity (Ms → ∞) forms earlier in the AB model.

However, it has been observed that simply adding a term proportional to R2

to the f(R) action, with a sufficiently small coefficient to ensure the existence of

the primordial inflation, solves this type of singularity [35, 47]. This term is often

assumed to be the Starobinsky inflationary term, R2/6M2. Thus, the R2-corrected

versions of the AB, HS, and Starobinsky models are given, respectively, by

fAB(R) = f IAB(R) +
R2

6M2
, (5.33)

fHS(R) = f IHS(R) +
R2

6M2
, (5.34)

fS(R) = f IS(R) +
R2

6M2
, (5.35)

The R2-corrected AB model, or simply R2-AB model (first line), is equivalent to

the improved gR2-AB model with g = 1/2, whose main cosmological constraints

are reported in Refs. [51, 250, 251]. Similar versions of the R2-HS model (second

line) and the R2-Starobinsky model (third line) have also been studied in Refs. [51]

and [252], respectively.

Finally, it can be verified that adding the starobinsky-like term to the f(R)

action results in an upper limit for the scalaron rest-mass, Ms ≤ M. In order to

fit the observed amplitude of the primordial power spectrum, this mass scale should

be chosen as M ≈ 1.2 × 10−5MPl [51], where MPl = 2.44 × 1018GeV is the Planck

mass (conventionally, MPl = κ−1 = 1/
√
8πG ). Thus, the R2 correction is negligibly

small at present curvatures R ∼ Rvac.
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5.4 Cosmological evolution

Let us start with the R2-AB model defined in Eq. (5.33). Assuming the universe is

filled with a fluid consisting of non-relativistic matter and radiation, the background

dynamical equations are given by

3H2 = κ2 (ρm + ρr + ρDE) , (5.36)

2Ḣ + 3H2 = −κ2 (Pm + Pr + PDE) , (5.37)

with [249]

κ2ρDE =
R

4
−
(

1

3M2
+

sech2yAB

2ϵAB

)
3HṘ− ϵAB

4
ln

(
cosh yAB

cosh b

)
− R2

12M2

+

[
R

M2
+

3(tanh yAB − 1)

2

]
(Ḣ +H2) ,

(5.38)

κPDE = −R
4
+

(
1

3M2
+

sech2yAB

2ϵAB

)
ξR +

ϵAB

4
ln

(
cosh yAB

cosh b

)
+

R2

12M2

− Ṙ2 tanh yAB sech2yAB

ϵ2AB

−
[

R

3M2
+

(tanh yAB − 1)

2

]
ξH .

(5.39)

where we define the auxiliary variables yAB ≡ R/ϵAB − b, ξR ≡ R̈ + 2HṘ, and

ξH ≡ Ḣ + 3H2. Throughout the RD and deeper MD eras, when Rvac ≪ R ≪ M2,

the expressions in Eqs. (5.38) and (5.39) can be approximated, respectively, by

κ2ρDE ≃ Rvac

4
+

1

M2

(
H1 −

R2

12

)
− 1

e2yAB

(
3
ä

a
+

6HṘ

ϵAB

+
ϵAB

4

)
(5.40)

and

κ2PDE ≃ −Rvac

4
+

1

M2

(
H2 +

R2

12

)
− 1

e2yAB

(
H3 −

4Ṙ2

ϵ2AB

+
ϵAB

4

)
. (5.41)

where H1 ≡ (Ḣ+H2)R−HṘ, H2 ≡ (ξR−ξHR)/3, and H3 ≡ (2ξR/ϵAB)+ξH . Since

R and M are both very large in these epochs, we expect a strong suppression of the

last two terms in Eqs. (5.40) and (5.41), and, consequently, an EoS wDE ≃ −1. This

implies that the R2-AB model recovers GR at high z. On the other hand, at later

times, when R ∼ Rvac, the scalaron mass becomes small, and significant deviations

from wDE = −1 are expected.

To derive the equations of motion for both the R2-HB and Starobinsky models,

given by Eqs. (5.34) and (5.35), respectively, we use a different approach, that was
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introduced in Ref. [46]. First, we introduce the variables

yH ≡ H2

m2
0

− a−3 − χra
−4 , (5.42)

yR ≡ R

m2
0

− 3a−3 , (5.43)

where χr ≡ Ωr,0/Ωm,0. We can then rewrite Eqs. (4.62) and (4.66) as

d2yH
dN2

+ J1
dyH
dN

+ J2yH + J3 = 0 (5.44)

and

R = 3m2
0

(
a−1dyH

dN
+ 4yH − a−3

)
, (5.45)

respectively, where N ≡ ln a (remember) is the number of e-folds, and

J1 = 4 +
1

yH + a−3 + χra−4

1− f,R
6m2

0f,RR
, (5.46)

J2 =
1

yH + a−3 + χra−4

2− f,R
3m2

0f,RR
, (5.47)

J3 = −3a−3 +
(1− f,R) (a

−3 + 2χra
−4) + (R− f)/3m2

0

yH + a−3 + χra−4

1

6m2
0f,RR

. (5.48)

After solving these background equations and obtaining yH = yH(a), we can invert

Eq. (5.42) to obtain the Hubble function H = H(a) for both the HS and Starobinsky

models. Additionally, we can reconstruct the EoS wDE = −1− (dyH/dN)/3yH .

The choice of using two distinct methods to solve the equations of motion for

the f(R) models under discussion arises for the following reasons. For the R2-AB

model, the second method encountered a high number of numerical issues that we

were unable to solve. Conversely, we found it challenging to effectively apply the

first method to the R2-HS and Starobinsky models. Generally, in the literature,

the second method is more commonly used in studies involving these last latter two

f(R) models.

5.5 Initial conditions and numerical results

We now discuss the initial conditions and the appropriate mass scale M required

to numerically solve both the background and perturbed equations for the three

models under consideration: the AB, HS and Starobinsky f(R) models. Following

this, we present our numerical results and provide a thorough analysis of them.

Fist, we set ai = 0.2 (i.e., zi = 4) as the initial scale factor, as it is reasonable

to assume that the ΛCDM model accurately describes the observed universe from
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this point onwards (onwards here means back in the time). Notice that the f(R)

Friedmann equations are third-order in the Hubble function H(a). Consequently,

three initial conditions are needed:

Hi ≡ HGR(ti) , Ḣi ≡ ḢGR(ti) , Ḧi ≡ ḦGR(ti) , (5.49)

where ti ≡ t(ai), specifically for the AB model. For the HS and Starobinsky cases, in

which we use a different approach based on the function yH(a), defined in Eq. (5.42),

the initial conditions must satisfy

yH(ai) =
1− Ωm,0

Ωm,0

,
dyH
dN

(ai) = 0 . (5.50)

Unlike the equations for H(a), those for the auxiliary variable yH(a) are second-

order, and thus only two initial conditions are required. Since Ωr,0 ∼ 10−5, we have

disregarded the term involving χr compared to the others when deriving the initial

conditions above.

For the growing modes at the perturbation level, we assume initial conditions

such that

δm(ai) = ai ,
d δm
da

(ai) = 1 . (5.51)

It turns out that we can take δ(a) = a and d δ(a)/da = 1 when a ≪ 1 [253].

Similar to yH(a), the equations for the matter fluctuations are second-order in the

matter density contrast δm(a). Therefore, only two initial conditions are needed

when solving Eqs. (4.124).

It is important to note that the frequency of small oscillations of the Ricci scalar,

ωosc ≡ Ms ≤ M, depends on R, which itself is a function of time. Therefore, both

ωosc and Ms are time-dependent, or equivalently, scale factor-dependent. These

quantities are upper-bounded by the mass scale M. Notably, M is very large

during inflation (∼ 1013GeV) and decreases as the universe ages. As suggested in

Ref. [51], an appropriate mass scale M corresponds to ∆ ≡ ϵX/M2 = 10−7, for the

redshift range 0 ≤ z ≤ 4, where the current curvature scale ϵX takes three different

values: ϵAB, m
2
0, and RS for the R2-AB, HS, and Starobinsky models.

In Figure 5.1(a), we display the Hubble function H(z) for the R2-AB model,

obtained from the numerical solution of Eqs. (5.36) and (5.37). For comparison,

we include the fiducial H(z) from the standard flat-ΛCDM cosmology. Notice that

there is almost no difference between these models from the Hubble function. Next,

in Figure 5.1(b), we show the behavior of the EoS parameter, wDE(z). It is possible

to observe that the R2-AB model reproduces the standard ΛCDM cosmology in the

past, as expected, with wDE oscillating around −1 for z > 2. However, for z ≲ 2,
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Figure 5.1: curves of H(z) [panel (a)] and wDE(z) [panel (b)] for the R
2-AB (blue)

and flat-ΛCDM (red) models, assuming H0 = 67.4 km s−1Mpc−1 and Ωm,0 = 0.315,
as determined by Planck [88], along with b = 2 and ∆ = 10−7, following Ref. [51].
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Figure 5.2: Curves of H(z) [panel (a)] and wDE(z) [panel (b)] for the R2-
AB model with b = 2 (blue), 3 (black), and 6 (teal). Assumptions include
H0 = 67.4 km s−1Mpc−1, Ωm,0 = 0.315, and ∆ = 10−7. For comparison, the flat-
ΛCDM model curves (red) were plotted using the same values of H0 and Ωm,0.
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Figure 5.3: Curves of δm(z) [panel (a)] and fσ8(z) [panel (b)] for the R2-AB
(blue) and flat-ΛCDM (red) models. Assumptions include H0 = 67.4 km s−1Mpc−1,
Ωm,0 = 0.315, σ8,0 = 0.811, b = 2, and ∆ = 10−7.
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Figure 5.4: σ8(z) [panel (a)] and fσ8(z) [panel (b)] curves according to the R2-AB
model for b = 2 (blue), 3 (black), and 6 (teal) assuming H0 = 67.4 km s−1Mpc−1,
Ωm,0 = 0.315, σ8,0 = 0.811, and ∆ = 10−7. For comparison, the flat-ΛCDM curves
(red) were plotted for the same values of H0, Ωm,0, and σ8,0 = 0.811.

it diverges from its GR value, exhibiting a phantom behavior for 0.2 ≲ z < 2 and

wDE > −1 for z ≲ 0.2. This behavior changes very little as we vary the cosmological

parameters involved, H0 and Ωm,0. We can also observe that as we increase the value

of the parameter b, the R2-AB model approaches the flat-ΛCDM model, as seen in

Figures 5.2(a) and 5.2(b).

Due to degeneracy in the cosmological background, it is necessary to move to

the perturbative level. We then examine cosmological perturbations via the matter

density contrast, δm(z), and the parameterized growth rate, [fσ8](z). It is worth

mentioning that in MTGs, such as f(R) or the scalar-tensor theories, structure for-

mation depends on the scale k through the effective gravitational coupling, Geff(z, k)

[see Eq. (4.125)]. Figures 5.3(a) and 5.3(b) show, respectively, the numerical solu-

tions for δm(z) and [fσ8](z) for both the R2-AB and standard flat-ΛCDM models,

assuming k = 0.125Mpc−1 and σ8,0 = 0.811 [88]. Similarly to the background level,

increasing the parameter b causes the blue curves to overlap with the red ones (see

Figures 5.4(a) and 5.4(b)), indicating that this parameter provides a measure of the

similarity (or difference) between GR theory and the R2-AB f(R) model. Thus, the

R2-AB model recovers GR phenomenology whenever R ≫ Rvac or b≫ 1.

The numerical results above pertain specifically to the R2-AB model and are

published in [249]. We now present results from the numerical analyses of the HS

and Starobinsky models and compare them with those of the R2-AB model. For

simplicity, we assume n = 1 in both theories. Setting n = 1 is also the most studied

case, with several works exploring this choice (see, e.g., Refs. [254, 255] for the HS

model, Refs. [67, 252] for the Starobinsky model, and Refs. [256, 257] for both).

As seen in Figures 5.2(a) and 5.5, the H(z) solution for the R2-AB model never

crosses HAB ≤ HΛCDM, while those of HS and Starobinsky allow HHS, HS < HΛCDM.
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However, it is not possible to distinguish between these models through experiments

or current data based on background alone. In contrast, the curves for wDE(z)

show slight differences from each other and are notably distinct from the ΛCDM

model. As shown in Figure 5.6(a), each model exhibits a phantom-like behavior,

with wDE < −1, at slightly different redshift ranges. Among these models, the

R2-AB model exhibits the most pronounced phantom behavior and is the first to

recover the ΛCDM evolution. The Starobinsky model shows the highest values of

wDE in the recent period (z ≲ 0.5), while the HS model deviates the least from

wDE = −1 throughout the background evolution.

At the perturbative level, as seen in Figure 5.6(b), both the HS and Starobinsky

models predict more pronounced late-time structure growth compared to the R2-

AB model, which is upper limited by the ΛCDM solution (i.e., fσAB
8 ≤ fσΛCDM

8 ;

see again Figure 5.4(b)). Since structure evolution in the framework of f(R) gravity

depends on the scale k, this conclusion applies only to the scales studied here –

namely, k = 0.125hMpc−1 and k = 0.1hMpc−1.

In general terms, we can say that the cosmological background in f(R) theories

is almost entirely degenerate with each other and with the ΛCDM model, with the

rare exception of the equation of state. In fact, the DE EoS serves as an excellent

model discriminator at the background level, whether they are quintessential, Chap-

lygin gas, or geometric f(R) models. On the other hand, at the perturbative level,

significant differences between these models emerge. In summary, we conclude that

the R2-AB model most closely resembles the standard ΛCDM model, both at the

background and perturbative levels.

5.6 Cosmological datasets

In this section, we present the cosmological datasets used to constrain the free

parameters of the R2-AB and HS models: H(z) from cosmic chronometer (CC)

observations, [fσ8](z) from redshif-space distortion (RSD) observations, and mB(z)

measurements of SNe Ia from Pantheon+ and SH0ES catalogs.

5.6.1 Cosmic Chronometers

One effective way to measure H(z) without assuming a cosmological model is the

cosmic chronometers method. This approach is based on the relationship

H (z) = − 1

(1 + z)

dz

dt
≃ − 1

(1 + z)

∆z

∆t
, (5.52)
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Figure 5.5: Curves of H(z) for the R2-AB (blue), HS (black), and Starobinsky
(green) models, along with the flat-ΛCDM (red dashed) model. The parameters used
in this plot are b = 5, n = 1, c2 = 1, and λS = 2, along with {H0,Ωm,0} = {70, 0.3}.
The H(z) solution for the R2-AB model is lower-bounded by HAB ≥ HΛCDM, while
the HS and Starobinsky models allow for HHS, HS < HΛCDM.
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Figure 5.6: Curves of wDE(z) [panel (a)] and fσ8(z) [panel (b)] for the R2-AB
(blue), HS (black), and Starobinsky (green) models, as well as the flat-ΛCDM model
(red). Both plots assume b = 2, n = 1, c2 = 1, and λS = 2, along with the cosmo-
logical parameters {H0,Ωm,0} = {70, 0.3} and a physical scale of k = 0.1hMpc−1.
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Table 5.2: The 31 H(z) measurements obtained from the CC approach using the
BC03 SPS model.

z H(z) Ref. z H(z) Ref.

0.07 69.0± 19.6 [258] 0.4783 80.9± 9.0 [259]
0.09 69.0± 12.0 [260] 0.48 97.0± 62.0 [261]
0.12 68.6± 26.2 [258] 0.593 104.0± 13.0 [262]
0.17 83.0± 8.0 [260] 0.68 92.0± 8.0 [262]
0.179 75.0± 4.0 [262] 0.781 105.0± 12.0 [262]
0.199 75.0± 5.0 [262] 0.875 125.0± 17.0 [262]
0.2 72.9± 29.6 [258] 0.88 90.0± 40.0 [261]
0.27 77.0± 14.0 [260] 0.9 117.0± 23.0 [260]
0.28 88.8± 36.6 [258] 1.037 154.0± 20.0 [262]
0.352 83.0± 14.0 [262] 1.3 168.0± 17.0 [260]
0.3802 83.0± 13.5 [259] 1.363 160.0± 33.6 [263]
0.4 95.0± 17.0 [260] 1.43 177.0± 18.0 [260]
0.4004 77.0± 10.2 [259] 1.53 140.0± 14.0 [260]
0.4247 87.1± 11.2 [259] 1.75 202.0± 40.0 [260]
0.4497 92.8± 12.9 [259] 1.965 186.5± 50.4 [263]
0.47 89.0± 49.6 [264]

obtained from the definition H ≡ ȧ/a, where the derivative term,

dz

dt
≃ ∆z

∆t
(5.53)

can be determined from two passively-evolving galaxies, i.e., those with old stellar

populations and low star formation rates, whose redshifts are marginally different

and whose ages are well-determined. Moreover, the selected galaxies have to differ in

age by a significantly lower amount than their passive evolution time. [265]. The age

of galaxies are estimated by assuming a stellar population synthesis (SPS) model.

In Table 5.2, we list 31 measurements of H(z) obtained through the CC method,

where the age of galaxies was determined by assuming the BC03 SPS model [266].

As a result, these measurements contain systematic uncertainties related only to

the SPS model and to possible contamination due to the presence of young stars in

quiescent galaxies [267, 268].

5.6.2 Normalized growth rate

The normalized growth rate, given by Eq. (3.94), most commonly used approach for

studying the clustering evolution of cosmic structures. One way to obtain it is by

first measuring the velocity scale parameter, defined as vsp = fg/δbias, where δbias is
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Table 5.3: The 20 [fσ8](z) measurements obtained from various surveys and cosmo-
logical tracers, as compiled by [276].

z [fσ8](z) Ref. z [fσ8](z) Ref.

0.02 0.398± 0.065 [269] 0.70 0.473± 0.041 [273]
0.025 0.39± 0.11 [270] 0.73 0.437± 0.072 [277]
0.067 0.423± 0.055 [271] 0.74 0.50± 0.11 [278]
0.10 0.37± 0.13 [272] 0.76 0.440± 0.040 [279]
0.15 0.53± 0.16 [273] 0.85 0.52± 0.10 [278]
0.32 0.384± 0.095 [274] 0.978 0.379± 0.176 [280]
0.38 0.497± 0.045 [273] 1.05 0.280± 0.080 [279]
0.44 0.413± 0.08 [277] 1.40 0.482± 0.116 [281]
0.57 0.453± 0.022 [282] 1.48 0.30± 0.13 [278]
0.59 0.488± 0.060 [283] 1.944 0.364± 0.106 [280]

the bias factor, and then using it in the relation

[fσ8](z) = vsp(z)σ
tr
8 (z) , (5.54)

where σtr
8 (z) is the matter fluctuation amplitude of the cosmological tracer, such as

HI line extra-galactic sources (EGS), luminous red galaxies (LRG), quasars (QSOs),

emission-line galaxies (ELG), and SNe Ia.

The parameterized growth rate data, [fσ8](z), are most often obtained using

the RSD effect observed in galaxy surveys [63, 244, 269–275]. In Table 5.3, we

present the data compilation from [276], which includes measurements of [fσ8](z).

This compilation follows a methodology in which double counting is eliminated and

possible biases are reduced, ensuring the reliability of the dataset (see Section 3 of

Ref. [276]).

5.6.3 Pantheon+ and SH0ES

When investigating the universe’s recent expansion history, SNe Ia have proven

to be a crucial probe. They contributed to the first verification of the universe’s

accelerated expansion [1, 2], in addition to helping map the universe’s large-scale

structure today. Cosmologists are increasingly relying on SNe Ia data to investigate

the dark energy EoS, thanks to the rising abundance of these observations at higher

redshifts and advancements in processing techniques.

From an observational point of view, it is assumed that different SNe Ia with

identical color, light curve shape, and galactic environment have, on average, the

same intrinsic luminosity across all redshifts. This hypothesis is quantified through

117



the empirical relationship [284]

µ̃obs = mB −MB + ν̃1X1 − ν̃2X2 + δµ̃−bias , (5.55)

where µ̃obs is the observed distance modulus, mB correspond to observed magnitude

in B-band rest-frame, while ν̃1, ν̃2, δµ̃−bias, and MB are the stretch of the light

curve correction X1, the SNe Ia color at maximum brightness correction X2, the

simulated bias correction, and the absolute magnitude in the B-band rest-frame,

respectively [284].

On the other hand, for a bright source at redshift z, the theoretical apparent

magnitude mB is given by

mB(z) = 5 log

[
dL(z)

10 pc

]
+MB , (5.56)

where dL(z) is the theoretical luminosity-distance. The theoretical distance modulus

reads as µ̃theo = mB −MB. For a flat cosmology (K = 0), the luminosity-distance is

given by

dL(z) = (1 + z)

∫ z

0

dz̃

H(z̃)
. (5.57)

In order to test the f(R) models, we have considered the Pantheon+ (PN+)

compilation [192], the successor to the original Pantheon (PN) [285], which ana-

lyzed 1701 SNe Ia light curves with redshifts 0.001 ≤ z ≤ 2.26. Because of the

larger sample size and improved methods for handling systematic uncertainties, the

analysis with PN+ presents an improvement factor of 2 in the power of cosmological

constraints compared to the original PN [192].

5.7 Analyses and Results

In our analyses, we consider Bayes’ theorem [286], which establishes a connection

between our prior knowledge of an event and its probability of occurrence. Simply

put, it links our knowledge of a specific parameter posterior (after acquiring the data)

with our a priori knowledge (before witnessing the data). An important concept in

this regard is the probability distribution function, or simply PDF.

Bayes’ theorem states that

P(ϑ|O, α) = P(O|ϑ, α)P(ϑ|α)
P(O|α) , (5.58)

where P(ϑ|O, α) is the posterior PDF, P(O|ϑ, α) matches the likelihood, P(ϑ|α)
corresponds to the prior, and P(O|α) is the evidence. We also have represented in
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this formula the following variables: ϑ cover the set of model parameters, O denotes

the observations (data), and α expresses the prior information (model). Since the

evidence P(O|α) is independent on model, we can disregard it as a normalizing con-

stant. This approach offers a means to update our understanding of the parameter

we aim to infer.

We then considere the Monte Carlo Markov Chain (MCMC) technique, based

on the Metropolis-Hastings algorithm, in order to generate random samples from

complex, high-dimensional PDFs. This method begins with an initial sample and

iteratively proposes new samples based on a proposal distribution. Each proposed

sample is accepted or rejected according to an acceptance criterion that ensures the

chain converges to the desired distribution. The resulting posterior PDF, centered

around the most likely values, allows us to obtain the best-fit of model parameters

with robust uncertainties.

If the observations Oi are Gaussian distributed, the likelihood is given by the

multivariate Gaussian [287],

L(ϑ) = exp

(
−1

2

∑
ij

∆εTi C
−1
ij ∆εj

)
, (5.59)

∆εi ≡ εi(ϑ|α)−Oi , (5.60)

where εi(ϑ|α) is the i-th expected value (based on a model) and Cij is the covariance

matrix encoding statistical and systematic uncertainties related to the dataset Oi.

For fully uncorrelated observations, this is simplified as C−1
ij = 1/σ2

i , where σ
2
i is the

error at datum i.

The sum in Eq. (5.59) is called the chi-square, often represented by χ2. In terms

of this quantity, the likelihood is given by

L = exp

(
−χ

2

2

)
(5.61)

For a joint analysis of our datasets, the total chi-square is expressed as

χ2 = χ2
SNe + χ2

CC + χ2
RSD , (5.62)

resulting in the total likelihood L = LSNe × LCC × LRSD.

It is common to consider the prior sets to have the same probability of occurrence,

so that P(ϑ|α) has the form of the Dirac delta distribution,

P(ϑ|α) =
{

1 if ϑ(0) < ϑ < ϑ(1),

0 otherwise,
(5.63)
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Figure 5.7: MCMC analysis for the R2-AB model, considering the PN+ SNe Ia data
alone. In this analysis, the absolute magnitude was fixed at MB = −19.253, as
determined by SH0ES [100]. The priors used were H0 = [64, 76], Ωm,0 = [0.1, 0.5],
and b = [1.6, 12].

where ϑ(0) and ϑ(1) are the flat prior intervals. Consequently, the posterior PDF is

given by P(ϑ|O, α) = L(ϑ), i.e, only by the likelihood.

There are two common methods for estimating the optimum value of the model

parameters: (i) the maximum likelihood and (ii) the least chi-square. The latter is

more commonly used and can be performed, for example, using the scipy.optimize

python library. Next, we explore the parametric space of the model parameters,

sampling the posterior distribution around the best-fit value, following the MCMC

method and the Metropolis-Hastings algorithm. The confidence regions are drawn

assuming L = Lmax+∆L0, where the constant ∆L0 is determined by the cumulative

probability density. To implement the MCMC routine, we use Python as well.

In our analyses we set:

• ϑ = [H0, Ωm,0, ϑmod], for the Hubble function;

• ϑ = [Ωm,0, σ8,0, ϑmod], for the growth rate; and

• ϑ = [H0, Ωm,0, MB, ϑmod], for the apparent magnitude,

where ϑmod is the model free parameter: b for the R2-AB and µ for the R2-HS. The

priors were defined according to the analysis performed.
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Figure 5.8: MCMC analysis for the R2-AB model considering the data combination
PN+ + CC + RSD. In this analysis, the prior intervals were set as H0 = [54, 76],
Ωm,0 = [0.1, 0.5], σ8,0 = [0.7, 0.9], MB = [−20.2, −19.0] and b = [1.6, 12].
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Figures 5.7 and 5.8 show our MCMC results for the R2-AB model, considering

only the PN+ SNe Ia dataset and the combination of SNe+CC+RSD, respectively,

published in [249]. Figures 5.9 and 5.10, in turn, display our MCMC results for

the HS model, considering only the PN+ SNe Ia dataset and the combination of

SNe +CC+RSD, respectively. All of these outcomes are summarized in Table 5.4.

Regarding theR2-AB model, as we can see, the most likely values obtained for the

model parameters depend on the analysis. Due to the H0 −MB degeneracy, for the

SNe Ia data alone, we set MB = −19.253, which is the value of absolute magnitude

measured by SH0ES collaboration [100], compatible with the local universe. This

leads to the following results:

1. H0 = 72.53+0.5
−0.3 km s−1Mpc−1, which is compatible with SH0ES [100];

2. Ωm,0 = 0.339+0.024
−0.021, indicating a current matter density slightly larger than

that from Planck 2018, but fully consistent when considering the measurement

uncertainty [88]; and

3. b = 2.28+6.52
−0.55.

In the joint analysis, instead, we can see that this degeneracy is broken by adding

the CC H(z) dataset, which provides the following results:

4. H0 = 67.5+1.7
−2.0 km s−1Mpc−1, fully consistent with Planck 2018 [88];

5. Ωm,0 = 0.334+0.020
−0.021, with the Planck 2018 value covered by the error bars;

6. σ8,0 = 0.774+0.029
−0.021, in weak tension with the Planck 2018 results but fully

consistent with LSS observations [288];

7. MB = −19.423+0.067
−0.047; and

8. b = 2.18+5.41
−0.55.

Both results obtained for the model parameter b cover GR within their uncertainties.

Similarly to the R2-AB model, the most likely values obtained for the HS model

parameters depend on the analysis. For the SNe Ia data alone, we obtained the

following results:

1. H0 = 72.63+1.98
−0.36 km s−1Mpc−1, which is compatible with SH0ES [100];

2. Ωm,0 = 0.324+0.021
−0.053, indicating a current matter density slightly larger than

that from Planck 2018, but fully consistent when considering the measurement

uncertainty [88]; and

3. µ = 77.0+18
−56.
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Figure 5.9: MCMC analysis for the HS model considering only PN+ SNe Ia data.
Here, we fixed MB = −19.253, as determined by SH0ES [100]. The priors used were
H0 = [54, 76], Ωm,0 = [0.1, 0.5], and µ = [0, 300].

For the joint analysis, we obtained:

4. H0 = 69.7+4.0
−2.6 km s−1Mpc−1, fully consistent with Planck 2018 [88];

5. Ωm,0 = 0.260+0.063
−0.041, with the Planck 2018 value covered by the error bars;

6. σ8,0 = 0.725+0.037
−0.031, in tension with the Planck 2018 results but consistent with

LSS observations [288];

7. MB = −19.391+0.053
−0.056; and

8. µ = 93+41
−55.

The values obtained for the parameter µ in both analyses exclude GR at 2σ. Our

MCMC results for the R2-AB and HS models are summarized in Table 5.4.

While the chi-square statistic is very useful for locating the best-fit parameters

within a given model, it is not appropriate for establishing comparisons between

models with different number of parameters. This is because lower values of χ2

can be obtained by simply increasing the number of parameters. Accordingly, other

criteria for model selection are used in the literature, such as the Akaike Information

Criterion (AIC) [289] and χ̄2
min ≡ χ2

min/(N −ϖ), where N is the number of data

points and ϖ is the number of independently adjusted parameters.
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Figure 5.10: MCMC analysis for the HS model considering the data combination
PN+ + CC + RSD. In this analysis, the prior intervals were fixed as H0 = [60, 85],
Ωm,0 = [0.1, 0.5], σ8,0 = [0.6, 0.9], MB = [−20.2, −19.0] and µ = [0, 300].

Model Parameter Only SNe SNe+CC+RSD
H0 72.53+0.5

−0.3 67.5+1.7
−2.0

Ωm,0 0.339+0.024
−0.021 0.334+0.020

−0.021

R2-AB σ8,0 — 0.774+0.029
−0.021

MB fixed −19.423+0.067
−0.047

b 2.28+6.52
−0.55 2.18+5.41

−0.55

H0 72.63+1.98
−0.36 69.7+4.0

−2.6

Ωm,0 0.324+0.021
−0.053 0.26+0.063

−0.041

R2-HS σ8,0 — 0.725+0.037
−0.031

MB fixed −19.391+0.053
−0.056

µ 77.0+18.0
−56.0 93.0+41.0

−55.0

Table 5.4: Best-fit values obtained from our MCMC likelihood analyses.
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Table 5.5: χ2 statistics for model comparison: ΛCDM versus R2-AB versus HS
model. As observed, the AIC penalizes both the f(R) models, as they have one
additional independent parameter.

Models
Estimators

ΛCDM R2-AB R2-HS

χ2
min 2898.865 2897.581 3029.834

N −ϖ 1748 1747 1747
χ̄2
min 1.658 1.659 1.734

∆AIC 0 0.716 132.969

The AIC for a model with parameters ϑ is defined as

AIC(ϑ) ≡ χ2
min(ϑ) + 2ϖ , (5.64)

where χ2
min ≡ −2 ln (Lmax) is the minimum chi-square, and Lmax is the maximum

likelihood. Thus, the difference between the investigated model and a reference

model (typically the flat-ΛCDM model) is given by ∆AIC = ∆χ2
min + 2∆ϖ.

To make a comparison, we consider the flat-ΛCDM model as the reference model.

We analyzed it using the same observational data as for the R2-AB and HS models.

The results are summarized in Table 5.5. It is observed that the AIC penalized both

the R2-AB and HS models, as they each have one additional – b and µ, respectively.

Therefore, according to this criterion, the flat-ΛCDM is the model provides the best-

fits to the cosmological data analyzed, i.e., the combined datasets of SNe+CC+RSD.

However, we highlight that the R2-AB model exhibits an AIC value very close to that

of the flat-ΛCDM model (∆AIC ∼ 0.7), making it a model that can be compared

to the standard flat-ΛCDM when describing the accelerated expansion and growth

of structures in the universe – without the need for exotic dark energy.

Ultimately, we observe that the R2-AB model appears to simultaneously alleviate

the H0 and S8 tensions. In the ΛCDM model, the current Hubble rate corresponds

to H(0) ≡ H0. In contrast, in f(R) cosmology, this parameter obeys

H(0) ≡ f1(H0,Ωm,0, b) (5.65)

where f1 is a functions of the cosmological and model parameter, evaluated at t = t0.

For the best-fit values in Table 5.4 – without accounting for error bars –, we obtain

H(0) = 71.17 km s−1Mpc−1. On the other hand, the spectral variance of matter

fluctuations follows as in the ΛCDM model, σ8(0) ≡ σ8,0, giving S8 = 0.817, again

without considering error bars.
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5.8 Summary

In this chapter, we discuss our methodology for analyzing three viable f(R) models:

1. the Appleby-Battye [49–51], 2. Hu-Sawicki [46], and 3. Starobinsky [47] models.

The class of f(R) theories offer alternative scenarios in which the recent cosmic

acceleration results from the geometry of spacetime, rather than from an unknown,

exotic form of energy [35]. This approach helps address various issues related to

the cosmological constant, or any other DE physical interpretation. However, f(R)

gravity is known to introduce an extra degree of freedom, called the scalaron [205].

This scalar field couples with the metric and contributes to gµν in describing the

gravitational field.

We began by presenting the models and the physical conditions under which

they can be considered viable alternatives to GR and, consequently, to the ΛCDM

model. However, f(R) models are known to suffer from a weak singularity problem

due to the unbounded growth of the scalaron mass at high curvatures [35, 51]. As a

result, f(R) theories cannot be naturally incorporated into any high-energy theory

without proper fine-tuning. To address this, we added to the effective action a

term proportional to R2 with a sufficiently small coefficient in order to ensure the

primordial inflation, as originally proposed in [35, 47]. Subsequently, we derived the

equations of motion for each resulting R2-corrected model: Eqs. (5.36) and (5.37)

for the R2-corrected AB model, and Eqs. (5.44) and (5.45) for both the HS and

Starobinsky models. These equations were then solved, with our numerical results

illustrated in Figures (5.5) through (5.5).

Moving to the second part of our analysis, we selected three datasets to constrain

the model parameters: 1. H(z) measurements from CC observations, 2. [fσ8](z)

from RSD observations [276], and SNe IamB(z) measurements from Pantheon+ and

SH0ES collaborations [192]. Currently, only two of the three examined f(R) models

have been constrained by our analysis: the R2-AB and HS models. For both models,

we constructed the probability density (likelihood) function, defined flat priors, and

performed MCMC analyses. The results for the R2-AB model are presented in

Figures 5.7 and 5.8, while those for the HS model are shown in Figures 5.9 and 5.10.

A summary of these outcomes can be found in Table 5.4.

In the final part of our work, we conducted a model comparison using the AIC,

defined by Eq. (5.64), with the flat-ΛCDM cosmology as the reference model, as

discussed in Chapter 3. A summary of our results is provided in Table 5.5. Our

findings on the R2-AB model are detailed in Ref. [249].

In general terms, all f(R) models performed well in describing the correct time

evolution of the universe along with the observational datasets used. While a cer-

tain degree of degeneracy exists between these models and ΛCDM at the background
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level, there remains potential for differentiation based on the geometric equation of

state, wDE(z). Another approach to breaking this degeneracy is at the perturbative

level, given that f(R) theories predict scale-dependent evolution of matter fluctua-

tions. However, parameter determination yielded mixed results: the R2-AB model’s

constraints were inconclusive, while the HS model diverged from the ΛCDM model

at the 2σ CL. Despite these findings, AIC penalizes both f(R) models due to the

extra independent parameter each includes relative to the flat-ΛCDM model. Thus,

according to this criterion, the flat-ΛCDM model emerges as the model best-fitting

the analyzed cosmological data – namely, the SNe+CC+RSD datasets.
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Chapter 6

Conclusions

Nowadays, cosmology possesses a concordance model to call standard, known as the

flat-ΛCDM model, emerged from efforts to reconcile theoretical predictions with

observational data gathered over the past century. This model is based only on GR,

the cosmological principle, and the inflationary hypothesis. It belongs to the class of

FLRW cosmologies, in which most of the universe’s content is dark, corresponding

to around 26% of DM and approximately 70% of DE. In this scenario, only about

4% is made of baryons (i.e., atoms, planets, dust, gas, and stars) and there is

almost no radiation. On the one hand, dark matter is necessary by explaining the

rotation curve of objects in gravitationally bound systems, such as galaxies and

galaxy clusters, the primordial acoustic oscillations, and the structure formation in

the universe. On the other hand, dark energy emerges as the attempt to explain the

current acceleration phase of the universe.

The flat-ΛCDM has the advantage of being the simplest cosmological model,

advantage a flat spatial three-section, non-relativistic (or cold) dark matter (CDM),

and dark energy arising from quantum vacuum energy fluctuation (i.e., the cosmo-

logical constant Λ). With only six independent parameters, it provides the best fit

to the current range of astronomical observations and is therefore also known as the

concordance model.

Despite its success, the flat-ΛCDM model, with its mysterious dark energy com-

ponent in the form of a cosmological constant, is not considered the final model of

cosmology, as it still has unresolved issues. The most significant of these questions

is undoubtedly the cosmological constant problem, or vacuum catastrophe, which

reveals a staggering staggering of up to 120 orders of magnitude between QFT pre-

dictions for vacuum energy and interpretations of cosmological observations in light

of the standard model. This discrepancy has led cosmologists and particle physicists

to question whether dark energy can indeed be correctly interpreted as a positive

cosmological constant or even if GR is the most appropriate theory for describing

gravitation on cosmological scales.
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These questions have led the community to adopt two main approaches: a more

conservative one, which involves allowing dark energy to be dynamic, and another

more bolder one, which involves extending GR to enable an accelerated expansion

without requiring any dark energy content. The second approach has gained further

prominence, as it addresses the long-standing question of GR’s renormalization. In

this context, we contribute to the efforts aimed at studying alternative cosmological

scenarios where GR is modified in order to explain the observed universe – both at

the background and perturbative levels – while recovering Einstein’s theory as an

appropriate limiting case.

The content of this thesis begins in Chapter 2, where we discuss the keynote

concepts underlying the current theory of gravity, Einstein’s GR, in order to lay the

groundwork for understanding modified (or extended) theories of gravity.

In Chapter 3, we address the modern theory of cosmology and the key cosmolog-

ical observations that support it. Combined with the inflationary hypothesis, these

elements yield the standard flat-ΛCDM model, which explains the recent phase of

cosmic acceleration as being driven by the cosmological constant, Λ, or equivalently,

the quantum vacuum energy density, ρvac. In this framework, structure formation is

primarily driven by the dynamics of the non-relativistic dark matter and triggered

by the evolution of adiabatic curvature fluctuations established in the very early

universe by inflation, which are expected to be approximately Gaussian.

In Chapter 4, we provide an overview of the motivations, methods, and challenges

associated with modifying GR, as well as an X-ray of the most successful ETGs,

namely, the prototype Brans-Dicke gravity, general scalar-tensor theories, the higher-

dimensional Kaluza-Klein theories, and the higher-order theories of gravity. Within

this last category lies the class of f(R) theories, the primary focus of our investigation

and the main subject of the second half of this chapter.

Higher-order f(R) theories are achieved by suitably modifying GR, where the

Einstein-Hilbert Lagrangian density, R− 2Λ (or simply R by inserting Λ into Tµν),

is replaced by an arbitrary function of the Ricci scalar, R, in order to reproduce

the observed late-time acceleration of the universe without requiring any dark en-

ergy content. This new geometric framework for spacetime must satisfy rigorous

phenomenological criteria [35, 43, 44, 205, 290, 291]:

• Since GR is a well-established theory for strong gravitational fields and small

scales, any modification should recover Einstein’s theory as a limiting theory

at appropriate scales and in strong gravitational fields;

• In the distant past, z ≫ 1, f(R) gravity should be consistent with a matter-

dominated era;

• At large scales and in the recent past, z < zt (= transition redshift), the
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expected behavior of f(R) gravity should explains the universe’s accelerated

expansion phase, a feature well-established by different cosmological tracers

(background level);

• At the perturbative level, f(R) gravity should satisfactorily explain observa-

tional data on the growth rate of cosmic structures.

This cosmic phenomenology, required for any contender to the concordance model

of cosmology, the flat-ΛCDM model, makes the search for viable f(R) candidates

nontrivial. One such candidate is the R2-AB model [49–51], which has limited refer-

ences in the literature and is investigated here using cosmological data to constrain

its parameters. Additionally, two other widely studied candidates, the HS [46] and

Starobinsky [47] models, are investigated here for comparison.

A general criticism of f(R) models is their tendency to exhibit unbounded growth

in the scalaron mass at high curvatures, or in the early universe. This type of weak

curvature singularity has been observed to develop within the redshift range of cos-

mological interest, i.e., |R| < ∞, for most models, introducing instabilities and

indicating an internal incompleteness of these theories [51]. For the AB model in

particular, it occurs within the interval 0 ≤ z ≤ 4. However, it has been shown that

adding an R2 term can address this issue by effectively constraining the scalaron

mass, thereby preventing excessive growth and ensuring the viability of these mod-

els [35, 47, 51]. In this context, we investigated the R2-AB, HS, and Starobinsky

models from a theoretical perspective and obtained cosmological constraints for the

R2-AB and HS models using CC [258–264], RSD [276], and SNe [192] data.

In general, an f(R) or other alternative model encounters the problem that

a larger number of parameters makes the statistical best-fit process less efficient

compared to the flat-ΛCDM model, which has just six independent parameters.

For this reason, we focused on models with only one or two additional independent

parameters compared to the ΛCDM model, such as the R2-AB model, with only

one additional free parameter: {b}, and the HS and Starobinsky models both with

two additional free parameter: {n, µ} and {n, λS}, respectively. However, by setting

n = 1, we reduced both the HS and Starobinsky models to a single free parameter:

µ for the HS model and λS for the Starobinsky model.

Thus, we performed MCMC analyses of the R2-AB and HS models using two

approaches: 1) considering only SNe Ia data, and 2) considering the joint analysis of

SNe+CC+RSD data. For the fist approach, we obtained H0 values compatible with

SH0ES measurements and Ωm,0 values slightly larger than those from Planck, but in

full agreement when considering the erro bars, for both models. For the second ap-

proach, we obtained H0 and Ωm,0 values compatible with Planck, σ8,0 values in weak

tension with Planck, but in full agreement with LSS observations [288], andMB val-
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ues compatible with SH0ES, for both models. Additionally, our analyses show that

both the R2-AB and HS model parameters are reasonably well-constrained by the

cosmological data applied. First, for the R2-AB model, SNe Ia data alone returned

a best-fit value for the model parameter b = 2.28+6.52
−0.55, whereas the joint analysis of

SNe+CC+RSD returned b = 2.18+5.41
−0.55; both values are compatible with each other

and fall within the interval where the R2-AB model satisfies all the phenomenolog-

ical criteria mentioned above [44, 49, 51]. Second, for the HS model, SNe Ia data

alone returned µ = 77.0+18.0
−56.0, whereas the joint analysis of SNe+CC+RSD returned

µ = 93.0+41.0
−55.0; both results exclude GR (case with µ = 0) at 2σ CL.

The results of our statistical analyses show that both the R2-AB and HS models

are consistent with the observational data used, encompassing both the background

and perturbative aspects. However, the determination of the R2-AB model parame-

ter b was inconclusive (see Table 5.4), highlighting the need for further investigation

into alternative scenarios and additional analyses incorporating different observa-

tional datasets. Furthermore, our analyses show that the R2-AB model exhibits

an AIC value very close to that of the flat-ΛCDM model (∆AIC ∼ 0.7), making

it a competitive alternative to the standard flat-ΛCDM model when describing the

accelerated expansion and growth of structures in the universe – without the need

for exotic dark energy. Our findings on the R2-AB model are published in Ref. [249].
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and the Hubble-Lemâıtre law in the Local Universe with the ALFALFA

survey. Brazilian Journal of Physics, 53:49, feb 2023.

[158] M. Lopes, A. Bernui, C. Franco, and F. Avila. Bulk flow motion detection in

the Local Universe with Pantheon+ Type Ia Supernovae. APJ, 967(1):47,

may 2024.

[159] I. M. H. Etherington. On the definition of distance in general relativity. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, 15:761–773, 1933.

[160] G. Efstathiou and S. Gratton. The evidence for a spatially flat Universe.

Monthly Notices of the Royal Astronomical Society: Letters, 496:L91–L95,

2020.

[161] E. M. Barboza. Sobre a Expansão Acelerada do Universo e a Natureza da

Energia Escura. Phd thesis, Observatório Nacional, 2010.
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[223] G. Nordström. über die Möglichkeit, das elektromagnetische Feld und das

Gravitationsfeld zu vereinigen. Physikalische Zeitschrift, 15:504–506,

1914.

[224] E. J. Copeland and D. J. Toms. Stability of self-consistent higher-dimensional

cosmological solutions. Phys. Rev. D, 32:1921–1927, 1985.

[225] A. Flachi, J. Garriga, O. Pujolas, and T. Tanaka. Moduli stabilization in

higher-dimensional brane models. JHEP, 08:053, 2003.

[226] E. Palti. Aspects of moduli stabilisation in string and M-theory, 7 2006.

[227] L. McAllister and F. Quevedo. Moduli Stabilization in String Theory, 10 2023.

[228] R. Utiyama and B. S. DeWitt. Renormalization of a classical gravitational

field interacting with quantized matter fields. J. Math. Phys., 3:608–618,

1962.

[229] A. Einstein. Einheitliche Feldtheorie von Gravitation und Elektrizität.

Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin),

1925:414–419, 1925.

[230] M. Ferraris, M. Francaviglia, and C. Reina. Variational formulation of general

relativity from 1915 to 1925 ”Palatini’s method” discovered by Einstein

in 1925. Gen. Rel. Grav., 14:243–254, 1982.

[231] M. Amarzguioui, O. Elgaroy, D. F. Mota, and T. Multamaki. Cosmological

constraints on f(R) gravity theories within the Palatini approach. As-

tronomy & Astrophysics, 454:707–714, 2006.

[232] M. Campista, B. Santos, J. Santos, and J. S. Alcaniz. Cosmological conse-

quences of exponential gravity in Palatini formalism. Physics Letters B,

699:320–324, 2010.

[233] B. Santos, M. Campista, J. Santos, and J. S. Alcaniz. Cosmology with

Hu-Sawicki gravity in Palatini Formalism. Astronomy & Astrophysics,

548:A31, 2012.

[234] D. A. Gomes, R. Briffa, A. Kozak, J. L. Said, M. Saal, and A. Wojnar. Cos-

mological constraints of Palatini f(R) gravity. Journal of Cosmology and

Astroparticle Physics, 01:011, 2024.

[235] E. Barausse, T. P. Sotiriou, and J. C. Miller. Curvature singularities, tidal

forces and the viability of Palatini f(R) gravity. Class. Quant. Grav.,

25:105008, 2008.

149
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Appendix A

Appendix A

In this appendix, we give two tables containing details of relevant H0 measurements

to supplement Chapter 3. The first table, Table A.1, shows the time evolution of

H0 measurements from 2003 to 2022, a period during which the current Hubble

tension has been characterized, based on CMB and SNe Ia observations. Figure 3.4

is based on the measurements on this table. The second table, Table A.2, includes

50 of the most recent H0 measurements, distributed across three groups: (i) mea-

surements 1–7 are derived from early cosmological probes and assume a flat-ΛCDM

model; (ii) measurements 8–23 are late-time measurements that also assume a fidu-

cial flat-ΛCDM cosmology; and (iii) measurements 24–50 are model-independent,

involving only late-time probes. The measurements in this table serve as the basis

for Figure 3.5.
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Table A.1: Timeline of H0 measurements from CMB (early universe) and distance-
ladder (late-time universe) observations.

Nº Year H0 Methods Authors Ref.[
km s−1Mpc−1

]
1 2003 72.00± 5.00 WMAP1 Spergel et al. [101]
2 2007 73.20+3.1

−3.2 WMAP3 Spergel et al. [102]
3 2009 71.90+2.6

−2.7 WMAP5 Hinshaw et al. [103]
4 2011 70.40± 2.50 WMAP7 Komatsu et al. [104]
5 2013 69.32± 0.80 WMAP9 Bennett et al. [105]
6 2014 67.30± 1.20 Planck13 Ade et al. [106]
7 2016 67.80± 0.90 Planck15 Ade et al. [107]
8 2018 67.36± 0.54 Planck18 Aghanim et al. [88]
9 2020 67.60± 1.10 ACT20 Aiola et al. [108]
10 2001 72.00± 8.00 HST Key Project Freedman et al. [92]
11 2009 74.20± 3.60 Cepheids+SNe Ia Macri et al. [94]
12 2011 73.08± 2.40 Cepheids+SNe Ia Riess et al. [95]
13 2012 74.30± 2.10 CHP12 Freedman et al. [93]
14 2016 73.24± 1.74 Cepheids+SNe Ia Riess et al. [96]
15 2018 73.48± 1.66 Cepheids+SNe Ia Riess et al. [97]
16 2019 74.03± 1.42 Cepheids+SNe Ia Riess et al. [98]
17 2021 73.20± 1.30 Cepheids+SNe Ia Riess et al. [99]
18 2022 73.04± 1.04 Cepheids+SNe Ia Riess et al. [100]
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Table A.2: 50 recent H0 measurements from early, late, and combined early-late
cosmological probes, with or without dependence on the cosmological model.
Nº Year H0 Methods Authors Ref.[

km s−1 Mpc−1
]

1 2020 67.27± 0.60 Planck18 Aghanim et al. [88]
2 2020 73.50± 5.30 lens Baxter et al. [292]
3 2020 67.36± 0.54 Planck18+lens Aghanim et al. [88]
4 2020 67.90± 1.50 ACT20 Aiola et al. [108]
5 2020 67.60± 1.10 ACT20+WMAP9 Aiola et al. [108]
6 2021 68.80± 1.50 SPT18 Dutcher et al. [293]
7 2021 67.49± 0.53 Planck18+SPT18+ACT20 Balkenhol et al. [294]
8 2020 68.50± 2.20 BOSS DDR12+BBN D’Amico et al. [295]
9 2020 67.90± 1.10 BOSS+BBN Ivanov et al. [296]
10 2020 69.60± 1.80 eBOSS+Planck18 Pogosian et al. [297]
11 2021 67.35± 0.97 BOSS+eBOSS+BBN Alam et al. [190]
12 2021 65.6+3.4

−5.5 BOSS DR12+BAO Philcox et al. [298]
13 2021 70.6+3.7

−5.0 BOSS DR12+BAO+lens Philcox et al. [298]
14 2022 69.6+4.1

−5.4 BOSS+BBN Philcox et al. [299]
15 2022 65.0+3.9

−4.3 BOSS+BBN+lens Philcox et al. [299]
16 2023 67.65± 0.44 Planck18+BAO Bernui et al. [300]
17 2023 67.60± 0.43 Planck18+BAO+lens Bernui et al. [300]
18 2024 68.30± 1.10 ACT20+BAO+BBN Madhavacheril et al. [301]
19 2024 68.10± 1.00 ACT20+BAO+BBN+Planck18 Madhavacheril et al. [301]
20 2024 68.53± 0.80 DESI+BBN Adame et al. [195]
21 2024 68.52± 0.62 DESI+BBN+θ∗ Adame et al. [195]
22 2024 67.97± 0.38 DESI+ACT20+Planck18+lens Adame et al. [195]
23 2024 72.60± 1.50 SNe Ia (directional analysis) Lopes et al. (arXiv) [158]
24 2020 75.10± 3.80 Tully-Fisher relation Schombert et al. [302]
25 2020 73.90± 3.00 Maser Pesce et al. [303]
26 2020 69.60± 2.50 TRGB+SNe Ia Freedman et al. [304]
27 2020 74.20± 1.60 Gravitational lens Millon et al. [305]
28 2020 75.8+5.2

−4.9 SNe II de Jaeger et al. [306]
29 2021 72.10± 2.00 TRGB+SNe Ia Soltis et al. [307]
30 2021 71.50± 1.80 TRGB+SNe Ia Anand et al. [308]
31 2021 68.0+12.0

−8.0 GWTC-3 Abbott et al. [309]
32 2021 73.60± 1.70 Gravitational lens Qi et al. [310]
33 2021 70.50± 5.75 SBF+SNe Ia Khetan et al. [89]
34 2021 73.30± 3.10 SBF+SNe Ia Blakeslee et al. [311]
35 2021 74.30± 1.45 Cepheids+SNe Ia Camarena and Marra [312]
36 2021 73.20± 1.30 Cepheids+SNe Ia Riess et al. [99]
37 2022 73.04± 1.04 Cepheids+SNe Ia Riess et al. [100]
38 2022 72.53± 0.99 Cepheids+TRGB+SNe Ia Riess et al. [100]
39 2022 73.20± 1.30 Cepheids+SNe Ia Mörtsell et al. [313]
40 2022 76.70± 2.00 Cepheids Mörtsell et al. [313]
41 2022 76.94± 6.40 TRGB+SNe Ia Dhawan et al. [314]
42 2022 75.4+3.8

−3.7 SNe II de Jaeger et al. [315]
43 2022 62.30± 9.10 FRB Hagstotz et al. [316]
44 2022 75.50± 2.50 Tully-Fisher relation Kourkchi et al. [317]
45 2022 75.4+11.0

−6.0 GW170817+GWTC–3 Mukherjee et al. [318]
46 2023 71.00± 3.00 FRB Liu et al. [319]
47 2023 74.60± 0.80 Tully-Fisher relation Tully et al. [320]
48 2023 74.20± 1.60 Quasar lens Shajib et al. [321]
49 2024 72.37± 2.97 Miras-SNe Ia Huang et al. [322]
50 2024 70.39± 1.40 SNe Ia (directional analysis) Lopes et al. [158]
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Appendix B

Appendix B

In this appendix, we provide our main computer codes along with a brief explanation

about them. The codes are written in python programming language and are pri-

marily designed to solve ODEs and to draw samples from probability distributions

via MCMC analyses.

First, we provide all the libraries, cosmological parameters, and their derivatives

with respect to the scale factor, general constants, quantities associated with f(R)

theories, those related to the specific f(R) model, and the fiducial (assumed a

priori) quantities.

# ———————————————————————————————

# Libraries:

import numpy as np

import pandas as pd

import scipy

from scipy import integrate

from scipy.integrate import solve ivp

from multiprocessing import Pool

import emcee

import time

from chainconsumer import ChainConsumer

import matplotlib.pyplot as plt

# ———————————————————————————————

# Cosmological parameters:

#1 t = scale factor

#2 z = cosmological redshift

#3 H = Hubble-Lemâıtre parameter

#4 E = normalized Hubble-Lemâıtre parameter

#5 yH = auxiliary parameter
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#6 R = Ricci curvature scalar

#7 O m = normalized matter energy density

#8 O r = normalized radiation energy density

#9 w = equation of state

#10 weff = effective equation of state

#11 D = matter density contrast

#12 sig8 = amplitude of matter perturbations at physical scales of 8Mpc/h

#13 fs8 = normalized growth rate at physical scales of 8Mpc/h

#14 k = wavenumber or scale of the perturbations

#15 dL = luminosity-distance

#16 mB = relative magnitude

#17 MB = absolute magnitude

# ———————————————————————————————

# Derivatives of the cosmological parameters:

#1 dH = 1st. derivative of H with respect to t

#2 ddH = 2nd. derivative of H with respect to t

#3 dddH = 3rd. derivative of H with respect to t

#4 dE = 1st. derivative of E with respect to t

#5 ddE = 2nd. derivative of E with respect to t

#6 dddE = 3rd. derivative of E with respect to t

#7 YH = 1st. derivative of yH with respect to t

#8 dD = 1st. derivative of D with respect to t

#9 ddD = 2nd.derivative of D with respect to t

# ———————————————————————————————

# Constants:

#1 H0 = Hubble constant

#2 R vac = vacuum Ricci curvature scalar

#3 O m0 = current normalized matter energy density

#4 O r0 = current normalized radiation energy density

#5 sig80 = current amplitude of matter perturbations at 8Mpc/h

#6 G = Newtonian gravitational constant

#7 c = speed of light

# ———————————————————————————————

# Regarding the f(R):

#1 fR = 1st. derivative of f(R) with respect to R

#2 fRR = 2nd. derivative of f(R) with respect to R

#3 Delta = scalaron mass scale

#4 M2 = squared scalaron mass

#5 Geff = effective gravitational “constant”
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# ———————————————————————————————

# Appleby-Battye (AB) model parameters:

#1 e AB = dependent AB model parameter

#2 b = independent AB model parameter

# ———————————————————————————————

# Hu-Sawicki (HS) model parameters:

#1 n = fixed HS model parameter

#2 c1 = dependent HS model parameter

#3 c2 (or mu) = independent HS model parameter

# ———————————————————————————————

# Starobinsky model parameters:

#1 n = fixed parameter

#2 Rs = dependent model parameter

#3 lbd = independent model parameter

# ———————————————————————————————

# Fiducial:

ti = 0.2

tf = 1.0

p = 1000

O r0 = 0

Delta = 10**(-7)

n = 1

t span = [ti, tf]

t = np.linspace(ti, tf, p)

z = (1/t) - 1

# ———————————————————————————————

We then provide the Hubble-Lemâıtre parameter H as a function of the scale factor

a, according to the GR/ΛCDM theory/model, i.e.,

# ———————————————————————————————

# H(t) according to the GR/LCDM theory/model:

def H GR(H0, O m0):

O m = O m0*t**(-3)

O r = O r0*t**(-4)

O L = 1 - O m0 - O r0

H GR = H0*np.sqrt(O m + O r + O L)

return H GR

# ———————————————————————————————
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and according to the three f(R) models, i.e.,

# ———————————————————————————————

# H(t) according to the R2-AB model:

def Hubble AB(t, y, H0, O m0, b):

H = y[0]

dH = y[1]

ddH = y[2]

O m = O m0*t**(-3)

O r = O r0*t**(-4)

R vac = 12*H0**2

e AB = R vac/np.log(1 + np.exp(2*b))

M2 = e AB/Delta

R = 6*H*(2*H + t*dH)

alpha = (R/e AB) - b

if abs(alpha) < 25:

s = 1/np.cosh(alpha)

else:

s = 0

A = (H0**2)*(3*O m + 4*O r)

B = (2*t*H*dH*R)/(3*M2)

C = t*H*dH*(np.tanh(alpha) + 1)

fAB1 = 6*(t**2)*(H**2)/e AB

fAB2 = ddH + ((dH**2)/H) + (5*dH/t)

if abs(alpha) < 15:

F = ((fAB1*fAB2*s)**2)*np.tanh(alpha)

else:

F = 0

if abs(alpha) < 15:

I = 6*(t**3)*(H**3)*((1/(3*M2)) + (0.5*s*s/e AB))

else:

I = 6*(t**3)*(H**3)*(1/(3*M2))

U = (11*dH*dH/(t*H)) + (dH*dH*dH/(H*H)) + (6*ddH/t) + (4*dH*ddH/H)

dddH = - ((A + B + C - F)/I) - U

return [dH, ddH, dddH]

def H AB(H0, O m0, b):

# Initial conditions according to the GR/LCDM theory
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O mi = O m0*ti**(-3)

O ri = O r0*ti**(-4)

O L = 1 - O m0 - O r0

Hi = H0*np.sqrt(O mi + O ri + O L)

dHi = - ((H0*H0)/(2*ti*Hi))*(3*O mi + 4*O ri)

ddHi = 0.5*(H0/(ti*Hi))**2*(Hi + ti*dHi)*(3*O mi + 4*O ri) +

0.5*(H0/(ti*Hi))**2*Hi*(9*O mi + 16*O ri)

y0 = [Hi, dHi, ddHi]

# H AB solution

sol AB = solve ivp(Hubble AB, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, b))

H AB = sol AB.y[0]

return H AB

# ———————————————————————————————

# ———————————————————————————————

# H(t) for both HS and Starobinsky models:

def yH HS(t, y, H0, O m0, c2):

# def yH S(t, y, H0, O m0, lbd):

yH = y[0]

YH = y[1]

O m = O m0*t**(-3)

O r = O r0*t**(-4)

chi = O r0/O m0

ms = (H0**2)*O m0

R = 3*ms*(4*yH + t*YH + t**(-3))

# ——– HS model ——–

# M2 = ms/Delta

c1 = 6*c2*(1 - O m0)/O m0

xn1 = (R/ms)**n

xn2 = c1/(ms**n)

xn3 = (n+1)*(c2/ms)*R**(2*(n-1))

xn4 = (n-1)*R**(n-2)

xn5 = ((c2*xn1) + 1)

f = R - ms*((c1*xn1)/((c2*xn1) + 1)) #+ R**2/(6*M2)

fR = 1 - n*xn2*ms*((R**(n-1))/(xn5**2)) #+ R/(3*M2)

fRR = n*xn2*ms*( (xn3 - xn4)/(xn5**3)) #+ 1/(3*M2)

# ——– Starobinsky model ——–

# Rs = 6*(H0**2)*(1 - O m0)/lbd
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# M2 = Rs/Delta

# star = 1 + (R/Rs)**2

# f = R + lbd*Rs*( (star**(-n)) - 1 ) #+ R**2/(6*M2)

# fR = 1 - 2*n*lbd*(R/Rs)*((star)**(-(n+1))) #+ R/(3*M2)

# fRR = (2*n*lbd/Rs)*(2*(n+1)*((R/Rs)**2)*(star**(-n-2)) - (star**(-n-1)))

#+ 1/(3*M2)

# ——– for both models ——–

yaux1 = yH + t**(-3) + chi*t**(-4)

yaux2 = t**(-3) + 2*chi*t**(-4)

j1 = 4 + (1/yaux1)*(1-fR)/(6*ms*fRR)

j2 = (1/yaux1)*(2-fR)/(3*ms*fRR)

j3 = - 3*t**(-3) - (((1-fR)*yaux2 + (R-f)/(3*ms))/yaux1)*(1/(6*ms*fRR))

J1 = (1/t)*(1 + j1)

J2 = (1/t)*(j2/t)

J3 = (1/t)*(j3/t)

dYH = - J1*YH - J2*yH - J3

return [YH, dYH]

def H HS(H0, O m0, c2):

# def H S(H0, O m0, lbd):

# Initial conditions according to the GR/LCDM theory

y0 = [(1-O m0)/O m0, 0]

# yH(t) solutions

sol HS = solve ivp(yH HS, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, c2))

# sol S = solve ivp(yH S, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, lbd))

yH HS1 = sol HS.y[0]

# yH S1 = sol S.y[0]

# H(t) solutions

chi = O r0/O m0

ms = (H0**2)*O m0

H HS = np.sqrt(ms*(yH HS1 + (1/t)**3 + chi*(1/t)**4))

# H S = np.sqrt(ms*(yH S1 + (1/t)**3 + chi*(1/t)**4))

return H HS

# return H S

# ———————————————————————————————

The DE equation of state wDE(a) is given through
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# ———————————————————————————————

# wDE(t) solution Appleby-Battye model:

def wDE AB(H0, O m0, b):

y0 = [Hi, dHi, ddHi] # recall this above

sol AB = solve ivp(Hubble AB, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, b))

H AB = sol AB.y[0]

dH AB = sol AB.y[1]

ms = O m0*H0**2

chi = O r0/O m0

yH AB = (H AB*H AB/ms) - sol AB.t**(-3) - chi*sol AB.t**(-4)

YH AB = (2*H AB*dH AB/ms) + 3*sol AB.t**(-4) + 4*chi* AB.t**(-5)

wDE AB = - 1 - sol.t*YH AB/(3*yH AB)

return wDE AB

# ———————————————————————————————

# ———————————————————————————————

# wDE(t) solutions for the Hu-Sawicki and Starobinsky models:

def wDE HS(H0, O m0, c2):

# def wDE S(H0, O m0, lbd):

y0 = [(1-O m0)/O m0, 0]

sol HS = solve ivp(yH HS, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, c2))

yH HS1 = sol HS.y[0]

YH HS1 = sol HS.y[1]

wDE HS = - 1 - sol HS.t*YH HS1/(3*yH HS1)

# sol S = solve ivp(yH S, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, lbd))

# yH S1 = sol S.y[0]

# YH S1 = sol S.y[1]

# wDE S = - 1 - sol S.t*YH S1/(3*yH S1)

return wDE HS

# return wDE S

# ———————————————————————————————

At the perturbative level, we numerically solved the differential equations for

the matter density contrast, δm(a), and used the results to compute the normalized

growth rate, [fσ8](a), for both the GR/ΛCDM and the three f(R) models. For the

GR/ΛCDM model, we have
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# ———————————————————————————————

# D(t) from the GR/LCDM model:

def contrast GR(t, y, H0, O m0):

D GR = y[0]

dD GR = y[1]

O m = O m0*t**(-3)

O r = O r0*t**(-4)

O L = 1 - O m0 - O r0

H GR = H0*np.sqrt(O m + O r + O L)

dH GR = - (H GR/t) - 0.5*(H0/t)*(H0/H GR)*(O m + 2*O r - 2*O L)

fGR1 = 3*H0**2

fGR2 = 2*(t**2)*(H GR**2)

ddD GR = - ((3/t) + (dH GR/H GR))*dD GR + (fGR1/fGR2)*O m*D GR

return [dD GR, ddD GR]

def D GR(H0, O m0):

y0 = [0.2, 1]

sol GR = solve ivp(contrast GR, t span, y0, t eval=t, method=‘LSODA’,

args=(H0, O m0))

D GR = sol GR.y[0]

return D GR

def fs8 GR(H0, O m0, sig80):

y0 = [0.2, 1]

sol GR = solve ivp(contrast GR, t span, y0, t eval=t, method=‘LSODA’,

args=(H0, O m0))

dD GR = sol GR.y[1]

fs8 GR = sig80*sol GR.t*(dD GR/D GR(H0, O m0)[999])

return fs8 GR

# ———————————————————————————————

In case of the R2-AB model, we have

# ———————————————————————————————

# D(t) according to the R2-AB model:

def contrast AB(t, y, H0, O m0, b):

H AB = y[0]

dH AB = y[1]

ddH AB = y[2]
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D AB = y[3]

dD AB = y[4]

O m = O m0*t**(-3)

O r = O r0*t**(-4)

R vac = 12*H0**2

e AB = R vac/np.log(1 + np.exp(2*b))

M2 = e AB/Delta

R AB = 6*H AB*(2*H AB + t*dH AB)

alpha = (R AB/e AB) - b

if abs(alpha) < 25:

s = 1/np.cosh(alpha)

else:

s = 0

A = (H0**2)*(3*O m + 4*O r)

B = (2*t*H AB*dH AB*R AB)/(3*M2)

C = t*H AB*dH AB*(np.tanh(alpha) + 1)

fAB1 = 6*(t**2)*(H AB**2)/e AB

fAB2 = ddH AB + ((dH AB**2)/H AB) + (5*dH AB/t)

if abs(alpha) < 15:

F = ((fAB1*fAB2*s)**2)*np.tanh(alpha)

else:

F = 0

if abs(alpha) < 15:

I = 6*(t**3)*(H AB**3)*((1/(3*M2)) + (0.5*s*s/e AB))

else:

I = 6*(t**3)*(H AB**3)*(1/(3*M2))

U = (11*dH AB**2/(t*H AB)) + (dH AB**3/(H AB**2)) + (6*ddH AB/t) +

(4*dH AB*ddH AB/H AB)

dddH AB = - ((A + B + C - F)/I) - U

fR = 0.5*(1 + np.tanh(alpha)) + R AB/(3*M2)

fRR= (0.5/e AB)*s**2 + 1/(3*M2)

k = 0.125*H0/100

gaux3 = (fRR/fR)*(k/t)**2

Geffn = (1/fR)*(1 + 4*gaux3)/(1 + 3*gaux3)

fABaux1 = 3*Geffn*H0**2

fABaux2 = 2*t*t*H AB*H AB

ddD AB = - ((3/t) + (dH AB/H AB))*dD AB +

(fABaux1/fABaux2)*O m*D AB

return [dH AB, ddH AB, dddH AB, dD AB, ddD AB]
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def D AB(H0, O m0, b):

y0 = [Hi, dHi, ddHi, 0.2, 1] # recall this above

sol AB = solve ivp(contrast AB, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, b))

D AB = sol AB.y[3]

return D AB

def fs8 AB(H0, O m0, sig80, b):

y0 = [Hi, dHi, ddHi, 0.2, 1] # recall this above

sol AB = solve ivp(contrast AB, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, b))

D AB = sol AB.y[3]

dD AB = sol AB.y[4]

fs8 AB = sig80*sol AB.t*(dD AB/D GR(H0, O m0)[999]

return fs8 AB

# ———————————————————————————————

For the HS and Starobinsky models, we have

# ———————————————————————————————

# D(t) according to the HS and Starobinsky models:

def contrast HS(t, y, H0, O m0, c2):

# def contrast S(t, y, H0, O m0, lbd):

yH = y[0]

YH = y[1]

D HS = y[2]

dD HS = y[3]

# D S = y[2]

# dD S = y[3]

O m = O m0*t**(-3)

O r = O r0*t**(-4)

chi = O r0/O m0

ms = (H0**2)*O m0

R = 3*ms*(4*yH + t*YH + t**(-3))

# ——– HS model ——–

# M2 = ms/Delta

c1 = 6*c2*(1 - O m0)/O m0

xn1 = (R/ms)**n
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xn2 = c1/(ms**n)

xn3 = (n+1)*(c2/ms)*R**(2*(n-1))

xn4 = (n-1)*R**(n-2)

xn5 = ((c2*xn1) + 1)

f = R - ms*((c1*xn1)/((c2*xn1) + 1)) #+ R**2/(6*M2)

fR = 1 - n*xn2*ms*((R**(n-1))/(xn5**2)) #+ R/(3*M2)

fRR = n*xn2*ms*( (xn3 - xn4)/(xn5**3)) #+ 1/(3*M2)

# ——– Starobinsky model ——–

# Rs = 6*(H0**2)*(1 - O m0)/lbd

# M2 = Rs/Delta

# star = 1 + (R/Rs)**2

# f = R + lbd*Rs*((star**(-n)) - 1) #+ R**2/(6*M2)

# fR = 1 - 2*n*lbd*(R/Rs)*((star)**(-(n+1))) #+ R/(3*M2)

# fRR = (2*n*lbd/Rs)*(2*(n+1)*((R/Rs)**2)*(star**(-n-2)) - (star**(-n-1)))

#+ 1/(3*M2)

# ——– for both models ——–

yaux1 = yH + t**(-3) + chi*t**(-4)

yaux2 = t**(-3) + 2*chi*t**(-4)

j1 = 4 + (1/yaux1)*(1-fR)/(6*ms*fRR)

j2 = (1/yaux1)*(2-fR)/(3*ms*fRR)

j3 = - 3*t**(-3) - (((1-fR)*yaux2 + (R-f)/(3*ms))/yaux1)*(1/(6*ms*fRR))

J1 = (1/t)*(1 + j1)

J2 = (1/t)*(j2/t)

J3 = (1/t)*(j3/t)

dYH = - J1*YH - J2*yH - J3

H = np.sqrt(ms*(yH + (1/t)**3 + chi*(1/t)**4))

dH = (R/(6*t*H)) - (2*H/t)

k = 0.125*H0/100

gaux3 = (fRR/fR)*(k/t)**2

Geffn = (1/(fR))*(1 + 4*gaux3)/(1 + 3*gaux3)

faux1 = 3*Geffn*H0**2

faux2 = 2*t*t*H*H

ddD HS = - ((3/t) + (dH/H))*dD HS + (faux1/faux2)*O m*D HS

# ddD S = - ((3/t) + (dH/H))*dD S + (faux1/faux2)*O m*D S

return [YH, dYH, dD HS, ddD HS]

# return [YH, dYH, dD S, ddD S]

def D HS(H0, O m0, c2):

# def D S(H0, O m0, lbd):
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y0 = [(1-O m0)/O m0, 0, 0.2, 1]

sol HS = solve ivp(contrast HS, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, c2))

D HS = sol HS.y[2]

# sol S = solve ivp(contrast S, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, lbd))

# D S = sol S.y[2]

return D HS

# return D S

def fs8 HS(H0, O m0, sig80, c2):

# def fs8 S(H0, O m0, sig80, lbd):

y0 = [(1-O m0)/O m0, 0, 0.2, 1]

sol HS = solve ivp(contrast HS, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, c2))

D HS = sol HS.y[2]

dD HS = sol HS.y[3]

fs8 HS = sig80*sol HS.t*(dD HS/D GR(H0, O m0)[999])

# sol S = solve ivp(contrast S, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, lbd))

# D S = sol S.y[2]

# dD S = sol S.y[3]

# fs8 S = sig80*sol S.t*(dD S/D GR(H0, O m0)[999])

return fs8 HS

# return fs8 S

# ———————————————————————————————

As a final numerical test, we plotted the σ8(a) function for both the ΛCDM and

R2-AB models, i.e.,

# ———————————————————————————————

# sig8(t) according to the LCDM model:

def sig8 GR(H0, O m0, sig80):

y0 = [0.2, 1]

sol GR = solve ivp(contrast GR, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0))

D GR = sol GR.y[0]

sig8 GR = sig80*D GR/D GR[999]

return sig8 GR
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# ———————————————————————————————

and

# ———————————————————————————————

# sig8(t) according to the R2-AB model:

def sig8 AB(H0, O m0, sig80, b):

y0 = [Hi, dHi, ddHi, 0.2, 1]

sol AB = solve ivp(contrast AB, t span, y0, t eval=t, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, b))

D AB = sol AB.y[3]

sig8 AB = sig80*D AB/D GR(H0, O m0)[999]

return sig8 AB

# ———————————————————————————————

respectively. Having done this, we covered all the numerical solutions presented in

this thesis, as shown in Figures 5.1(b) to 5.6(b).

The final steps involved adding the observational datasets for SNe, CC, and

RSD, constructing the SNe and joint likelihoods, LSNe and L = LSNe×LCC×LRSD,

respectively, and performing MCMC analyses for each model. To achieve this, we

developed the following Python code for the R2-AB model.

# ———————————————————————————————

# Fiducial:

O r0 = 7.88*10**(-5)

c = 299792.458

w = - 1

k = 0.125

# ———————————————————————————————

# CC H(a) data:

aCC = [0.337, 0.364, 0.395, 0.412, 0.423, 0.435, 0.491, 0.526, 0.532, 0.533, 0.561,

0.595, 0.628, 0.676, 0.676, 0.680, 0.690, 0.702, 0.714, 0.714, 0.725, 0.740,

0.781, 0.787, 0.833, 0.834, 0.848, 0.855, 0.893, 0.917, 0.935]

HCC = [186.5, 202.0, 140.0, 177.0, 160.0, 168.0, 154.0, 117.0, 90.0, 125.0,

105.0, 92.0, 104.0, 97.0, 80.9, 89.0, 92.8, 87.1, 77.0, 95.0, 83.0, 83.0, 88.8,

77.0, 72.9, 75.0, 75.0, 83.0, 68.6, 69.0, 69.0]

sigmaCC = [50.4, 40.0, 14.0, 18.0, 33.6, 17.0, 20.0, 23.0, 40.0, 17.0, 12.0,

8.0, 13.0, 62.0, 9.0, 49.6, 12.9, 11.2, 10.2, 17.0, 13.5, 14.0,

36.6, 14.0, 29.6, 5.0, 4.0, 8.0, 26.2, 12.0, 19.6]
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CC = pd.DataFrame({“aCC”:aCC, “HCC”:HCC, “sigmaCC”:sigmaCC})
# ———————————————————————————————

# RSD fs8(a) data:

aRSD = [0.340, 0.403, 0.417, 0.488, 0.506, 0.541, 0.568, 0.575, 0.578, 0.588, 0.629,

0.637, 0.694, 0.725, 0.758, 0.870, 0.909, 0.937, 0.976, 0.980]

fRSD = [0.364, 0.30, 0.482, 0.280, 0.379, 0.52, 0.440, 0.50, 0.437, 0.473, 0.488,

0.453, 0.413, 0.497, 0.384, 0.53, 0.37, 0.423, 0.39, 0.398]

sigmaRSD = [0.106, 0.13, 0.116, 0.080, 0.176, 0.10, 0.040, 0.11, 0.072, 0.041, 0.060,

0.022, 0.080, 0.045, 0.095, 0.16, 0.13, 0.055, 0.11, 0.065]

RSD = pd.DataFrame({“aRSD”:aRSD, “fRSD”:fRSD, “sigmaRSD”:sigmaRSD})
# ———————————————————————————————

# Pantheon+ data and covariant matrix:

df= pd.read csv(‘/home/usuario/Downloads/DataRelease-main/Pantheon+ Data/

4 DISTANCES AND COVAR/Pantheon+SH0ES.dat’, sep=‘ ’)

df=df.sort values(“zCMB”, ascending=False)

df[‘acmb’] = 1/(1+df[“zCMB”])

a sn = df[‘acmb’]

mcov = np.loadtxt(‘/home/usuario/Downloads/DataRelease-main/

Pantheon+ Data/4 DISTANCES AND COVAR/

Pantheon+SH0ES STAT+SYS.cov’, skiprows=1)

cov = np.reshape(mcov, (1701, 1701))

Icov=np.linalg.inv(cov)

# ———————————————————————————————

# H AB(aCC) solution:

acc = CC[‘aCC’]

def HCC AB(acc, H0, O m0, b):

y0 = [Hi, dHi, ddHi]

sol HCC AB = solve ivp(Hubble AB, t span, y0, t eval=acc, method=‘LSODA’,

rtol = 10**(-6), args=(H0, O m0, b))

H AB = sol HCC AB.y[0]

return H AB

# ———————————————————————————————

# fs8 AB(aRSD) solution:

arsd = RSD[‘aRSD’]

def norm contrast AB(t, y, O m0, b):

E AB = y[0]

dE AB = y[1]

ddE AB = y[2]

D AB = y[3]
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dD AB = y[4]

O m = O m0*t**(-3)

O r = O r0*t**(-4)

e AB = 12/np.log(1 + np.exp(2*b))

M2 = e AB/Delta

R AB = 6*E AB*(2*E AB + t*dE AB)

alpha = (R AB/e AB) - b

if abs(alpha) < 25:

s = 1/np.cosh(alpha)

else:

s = 0

A = (3*O m + 4*O r)

B = (2*t*E AB*dE AB*R AB)/(3*M2)

C = t*E AB*dE AB*(np.tanh(alpha) + 1)

fAB1 = 6*(t**2)*(E AB**2)/e AB

fAB2 = ddE AB + ((dE AB**2)/E AB) + (5*dE AB/t)

if abs(alpha) < 15:

F = ((fAB1*fAB2*s)**2)*np.tanh(alpha)

else:

F = 0

if abs(alpha) < 15:

I = 6*(t**3)*(E AB**3)*((1/(3*M2)) + (0.5*s*s/e AB))

else:

I = 6*(t**3)*(E AB**3)*(1/(3*M2))

U = (11*dE AB**2/(t*E AB)) + (dE AB**3/(E AB**2)) + (6*ddE AB/t) +

(4*dE AB*ddE AB/E AB)

dddE AB = - ((A + B + C - F)/I) - U

fR = 0.5*(1 + np.tanh(alpha)) + R AB/(3*M2)

fRR= (0.5/e AB)*s**2 + 1/(3*M2)

gaux3 = (fRR/fR)*(0.01*k/t)**2

Geffn = (1/fR)*(1 + 4*gaux3)/(1 + 3*gaux3)

fABaux1 = 3*Geffn

fABaux2 = 2*t*t*E AB*E AB

ddD AB = - ((3/t) + (dE AB/E AB))*dD AB +

(fABaux1/fABaux2)*O m*D AB

return [dE AB, ddE AB, dddE AB, dD AB, ddD AB]
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def norm contrast GR(t, y, O m0):

D GR = y[0]

dD GR = y[1]

O m = O m0*t**(-3)

O r = O r0*t**(-4)

O L = 1 - O m0 - O r0

E GR = np.sqrt(O m + O r + O L)

dE GR = - (E GR/t) - ((O m + 2*O r - 2*O L)/(2*t*E GR))

fGR1 = 3

fGR2 = 2*(t**2)*(E GR**2)

ddD GR = - ((3/t) + (dE GR/E GR))*dD GR + (fGR1/fGR2)*O m*D GR

return [dD GR, ddD GR]

def D norm GR(O m0):

y0 = [0.2, 1]

sol AB = solve ivp(norm contrast GR, t span, y0, t eval=t, method=’LSODA’,

rtol = 10**(-6), args=(O m0,))

D RSD AB = sol AB.y[0]

return D RSD AB

def fs8RSD AB(arsd, O m0, sig80, b):

O mi = O m0*ti**(-3)

O ri = O r0*ti**(-4)

O L = 1 - O m0 - O r0

Ei = np.sqrt(O mi + O ri + O L)

dEi = - (Ei/ti) - ((O mi + 2*O ri - 2*O L)/(2*ti*Ei))

au1 = Ei/(ti**2)

au2 = 0.5*(Ei + ti*dEi)/(ti*Ei)

au3 = (O mi + 2*O ri - 2*O L)/(ti*Ei)

au4 = (3*O mi + 8*O ri)/Ei

ddEi = au1 + au2*au3 + 0.5*(ti**(-2))*au4 - (dEi/ti)

y0 = [Ei, dEi, ddEi, 0.2, 1]

sol AB = solve ivp(norm contrast AB, t span, y0, t eval=arsd,

method=‘LSODA’, rtol = 10**(-6), args=(O m0, b))

D RSD AB = sol AB.y[3]

dD RSD AB = sol AB.y[4]

fs8 AB = sig80*sol AB.t*(dD RSD AB/D norm GR(O m0)[999])

return fs8 AB

# ———————————————————————————————
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# mB AB(a sn) solution:

# —— Initial conditions according to the GR/LCDM model ——

def int GR(H0, O m0):

ms = H0*np.sqrt(O m0)

O m = O m0*t**(-3)

O L = 1 - O m0 - O r0

hyper = scipy.special.hyp2f1

H GR = H0*np.sqrt(O m + O L)

x1 = - 1/(6*w)

x2 = 1 + x1

x3 = 1 - (1/O m0)

x4 = 1 - ((1/O m)*(H GR/H0)**2)

intGR = (2/ms)*(hyper(1/2,x1,x2,x3) - np.sqrt(t)*hyper(1/2,x1,x2,x4))

return intGR

# —— Integral into dL ——

def integral AB(H0, O m0, b):

y = 1/((t**2)*H AB(H0, O m0, b))

intAB = int GR(H0, O m0)[0] + integrate.cumulative trapezoid(y, t, initial=0)

return intAB

# —— Primitive ——

def primitive AB(H0, O m0, b):

prim AB = integral AB(H0, O m0, b)[999] - integral AB(H0, O m0, b)

return prim AB

# —— Interpolating with data points ——

def IntAB interp(H0, O m0, b):

x interp = df[‘acmb’]

y interp = np.interp(x interp, t, primitive AB(H0, O m0, b))

return y interp

# —— Luminosity-distance ——

def Lumi AB(H0, O m0, b):

dL AB = (c/df[‘acmb’])*(IntAB interp(H0, O m0, b))

return dL AB

# —— Relative magnitude ——

def mag AB(a sn, H0, O m0, Mb, b):

mb AB = 5*np.log10(Lumi AB(H0, O m0, b)) + 25 + Mb

return mb AB

# ———————————————————————————————

# CC chi-square:

y cc = CC[‘HCC’]
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yerr cc = CC[‘sigmaCC’]

def chiCC(acc, H0, O m0, b, y cc, yerr cc):

ycc model = HCC AB(acc, H0, O m0, b)

return np.sum(((y cc - ycc model)/yerr cc)**2)

def chi2cc(theta cc, acc, y cc, yerr cc):

H0, O m0, b = theta cc

return chiCC(acc, H0, O m0, b, y cc, yerr cc)

# ———————————————————————————————

# RSD chi-square:

y rsd = RSD[‘fRSD’]

yerr rsd = RSD[‘sigmaRSD’]

def chiRSD(arsd, O m0, sig80, b, y rsd, yerr rsd):

yrsd model = fs8RSD AB(arsd, O m0, sig80, b)

return np.sum(((y rsd - yrsd model)/yerr rsd)**2)

def chi2rsd(theta rsd, arsd, y rsd, yerr rsd):

O m0, sig80, b = theta rsd

return chiRSD(arsd, O m0, sig80, b, y rsd, yerr rsd)

# ———————————————————————————————

# SNe chi-square:

y sn = df[“m b corr”]

def deltaSNe(a sn, H0, O m0, Mb, b, y sn):

mb model = mag AB(a sn, H0, O m0, Mb, b)

deltaSNe = y sn - mb model

return deltaSNe

def chi2 SN(a sn, H0, O m0, Mb, b, y sn, Icov):

chisq = np.sum(np.dot(np.dot(deltaSNe(a sn, H0, O m0, Mb, b, y sn), Icov),

deltaSNe(a sn, H0, O m0, Mb, b, y sn)))

return chisq

def chisq SN(theta sn, a sn, y sn, Icov):

H0, O m0, Mb, b = theta sn

return chi2 SN(a sn, H0, O m0, Mb, b, y sn, Icov)

# ———————————————————————————————

# Total chi-square:

def chi tot(acc, arsd, a sn, H0, O m0, sig80, Mb, b, y cc,

y rsd, y sn, yerr cc, yerr rsd, Icov):

chicc = chiCC(acc, H0, O m0, b, y cc, yerr cc)

chirsd = chiRSD(arsd, O m0, sig80, b, y rsd, yerr rsd)

chisn = chi2 SN(a sn, H0, O m0, Mb, b, y sn, Icov)

return chicc + chirsd + chisn
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def chi2 tot(theta, acc, arsd, a sn, y cc, y rsd, y sn, yerr cc, yerr rsd, Icov):

H0, O m0, sig80, Mb, b = theta

return chi tot(acc, arsd, a sn, H0, O m0, sig80, Mb, b, y cc, y rsd, y sn,

yerr cc, yerr rsd, Icov)

# ———————————————————————————————

# likelihood:

def lnlike(theta, acc, arsd, a sn, y cc, y rsd, y sn, yerr cc, yerr rsd, Icov):

H0, O m0, sig80, Mb, b = theta

return -0.5*chi2 tot(theta, acc, arsd, a sn, y cc, y rsd, y sn, yerr cc,

yerr rsd, Icov)

# ———————————————————————————————

# prior:

def lnprior(theta):

H0, O m0, sig80, Mb, b = theta

if 54 < H0 < 76 and 0.1 < O m0 < 0.5 and 0.7 < sig80 < 0.9 and

-20.2 < Mb < -19 and 1.6 < b < 12:

return 0.0

return -np.inf

# ———————————————————————————————

# Posterior:

def lnprob(theta, acc, arsd, a sn, y cc, y rsd, y sn, yerr cc, yerr rsd, Icov):

lp = lnprior(theta)

if not np.isfinite(lp):

return -np.inf

return lp + lnlike(theta, acc, arsd, a sn, y cc, y rsd, y sn, yerr cc, yerr rsd, Icov)

# ———————————————————————————————

# Config:

data = (acc, arsd, a sn, y cc, y rsd, y sn, yerr cc, yerr rsd, Icov)

nwalkers = 25

niter = 8000

initial = np.array([70, 0.3, 0.8, -19.253, 2])

ndim = len(initial)

p0 = [np.array(initial) + 1e-4*np.random.randn(ndim) for i in range(nwalkers)]

# ———————————————————————————————

# Run MCMC:

with Pool() as pool:

def main(p0,nwalkers,niter,ndim,lnprob,data):

sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=data,

pool=pool)
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print(“Running burn-in...”)

p0, , = sampler.run mcmc(p0, 1500, progress=True)

sampler.reset()

print(“Running production...”)

pos, prob, state = sampler.run mcmc(p0, niter, progress=True)

return sampler, pos, prob, state

sampler, pos, prob, state = main(p0,nwalkers,niter,ndim,lnprob,data)

# ———————————————————————————————

burnin = 1500

like model = sampler.get log prob(discard=burnin, flat=False)

chi2 model = -2*like model

np.savetxt(‘log pro SNe+CC+RSD.txt’, like model, fmt=”%s”)

print(chi2 model.min())

# ———————————————————————————————

samples1 = sampler.flatchain

samples1[np.argmax(sampler.flatlnprobability)]

np.savetxt(“Results SNe+CC+RSD.txt”, samples1, fmt=”%s”)

# ———————————————————————————————

# Triangle plot:

c=ChainConsumer().add chain(samples1, parameters=[r“H0”, r“Ωm,0”, r“σ8,0”,

r“MB”, r“b”])

c.configure(shade alpha=1, summary=True, colors=[“blue”],

max ticks=4,legend artists=True)

fig = c.plotter.plot()

fig.set size inches(3 + fig.get size inches())

plt.savefig(‘SN+CC+RSD.pdf’, dpi=520, format=‘pdf’, bbox inches=’tight’)

# ———————————————————————————————

The HS model, in turn, proceeded from the following similar code.

# ———————————————————————————————

# H HS(aCC) solution:

def yH HS2(t, y, H0, O m0, mu):

yH = y[0]

YH = y[1]

O m = O m0*t**(-3)

O r = O r0*t**(-4)

Lbd = 3*(H0**2)*(1 - O m0)

chi = O r0/O m0
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ms = (H0**2)*O m0

R = 3*ms*(4*yH + t*YH + t**(-3))

A = (R**n) + (mu**(2*n))

B = (R**n)

C = (n+1)*(R**(2*n - 2)) - (n- 1)*(mu**(2*n))*(R**(n-2))

D = A**3

f = R - 2*Lbd*(B/A)

fR = 1 - 2*n*Lbd*(mu**(2*n))*(B/A)*(1/(R*A))

fRR = 2*n*Lbd*(mu**(2*n))*(C/D)

yaux1 = yH + t**(-3) + chi*t**(-4)

yaux2 = t**(-3) + 2*chi*t**(-4)

j1 = 4 + (1/yaux1)*(1-fR)/(6*ms*fRR)

j2 = (1/yaux1)*(2-fR)/(3*ms*fRR)

j3 = - 3*t**(-3) - (((1-fR)*yaux2 + (R-f)/(3*ms))/yaux1)*(1/(6*ms*fRR))

J1 = (1/t)*(1 + j1)

J2 = (1/t)*(j2/t)

J3 = (1/t)*(j3/t)

dYH = - J1*YH - J2*yH - J3

return [YH, dYH]

def HCC HS(acc, H0, O m0, mu):

y0 = [(1-O m0)/O m0, 0]

sol yHCC HS = solve ivp(yH HS2, t span, y0, t eval=acc, method=’LSODA’,

rtol = 10**(-6), args=(H0, O m0, mu))

yHCC HS = sol yHCC HS.y[0]

chi = O r0/O m0

ms = (H0**2)*O m0

HCC HS = np.sqrt(ms*(yHCC HS + (1/acc)**3 + chi*(1/acc)**4))

return HCC HS

# ———————————————————————————————

# fs8 HS(aRSD) solution:

def contrast HS2(t, y, H0, O m0, mu):

yH = y[0]

YH = y[1]

D HS = y[2]

dD HS = y[3]

O m = O m0*t**(-3)

O r = O r0*t**(-4)

Lbd = 3*(H0**2)*(1 - O m0)
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chi = O r0/O m0

ms = (H0**2)*O m0

R = 3*ms*(4*yH + t*YH + t**(-3))

A = (R**n) + (mu**(2*n))

B = (R**n)

C = (n+1)*(R**(2*n - 2)) - (n- 1)*(mu**(2*n))*(R**(n-2))

D = A**3

f = R - 2*Lbd*(B/A)

fR = 1 - 2*n*Lbd*(mu**(2*n))*(B/A)*(1/(R*A))

fRR = 2*n*Lbd*(mu**(2*n))*(C/D)

yaux1 = yH + t**(-3) + chi*t**(-4)

yaux2 = t**(-3) + 2*chi*t**(-4)

j1 = 4 + (1/yaux1)*(1-fR)/(6*ms*fRR)

j2 = (1/yaux1)*(2-fR)/(3*ms*fRR)

j3 = - 3*t**(-3) - (((1-fR)*yaux2 + (R-f)/(3*ms))/yaux1)*(1/(6*ms*fRR))

J1 = (1/t)*(1 + j1)

J2 = (1/t)*(j2/t)

J3 = (1/t)*(j3/t)

dYH = - J1*YH - J2*yH - J3

H HS = np.sqrt(ms*(yH + (1/t)**3 + chi*(1/t)**4))

dH HS = (R/(6*t*H HS)) - (2*H HS/t)

gaux3 = (fRR/fR)*(0.01*k/t)**2

Geffn = (1/fR)*(1 + 4*gaux3)/(1 + 3*gaux3)

fAB1 = 3*Geffn*H0**2

fAB2 = 2*t*t*H HS*H HS

ddD HS = - ((3/t) + (dH HS/H HS))*dD HS + (fAB1/fAB2)*O m*D HS

return [YH, dYH, dD HS, ddD HS]

def fs8 HS2(arsd, H0, O m0, sig80, mu):

y0 = [(1-O m0)/O m0, 0, 0.2, 1]

sol HS = solve ivp(contrast HS2, t span, y0, t eval=t, method=’LSODA’,

rtol = 10**(-6), args=(H0, O m0, mu))

D HS = sol HS.y[2]

dD HS = sol HS.y[3]

fs8 HS = sig80*sol HS.t*(dD HS/D GR(H0, O m0)[999])

return fs8 HS

# ———————————————————————————————

# mB HS(a sn) solution:

def H HS2(H0, O m0, mu):
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y0 = [(1-O m0)/O m0, 0]

sol yHCC HS = solve ivp(yH HS2, t span, y0, t eval=t, method=’LSODA’,

rtol = 10**(-6), args=(H0, O m0, mu))

yHCC HS = sol yHCC HS.y[0]

chi = O r0/O m0

ms = (H0**2)*O m0

H HS = np.sqrt(ms*(yHCC HS + (1/sol yHCC HS.t)**3 +

chi*(1/sol yHCC HS.t)**4))

return H HS

def integral HS2(H0, O m0, mu):

y = 1/((t**2)*H HS2(H0, O m0, mu))

intHS = int GR(H0, O m0)[0] + integrate.cumulative trapezoid(y, t, initial=0)

return intHS

def primitive HS2(H0, O m0, mu):

prim HS = integral HS2(H0, O m0, mu)[999] - integral HS2(H0, O m0, mu)

return prim HS

def IntHS interp2(H0, O m0, mu):

x interp = df[‘acmb’]

y interp = np.interp(x interp, t, primitive HS(H0, O m0, mu))

return y interp

def Lumi HS2(H0, O m0, mu):

dL HS = (c/df[‘acmb’])*(IntHS interp2(H0, O m0, mu))

return dL HS

def mag HS(a sn, H0, O m0, Mb, mu):

mb HS = 5*np.log10(Lumi HS2(H0, O m0, c2)) + 25 + Mb

return mb HS

# ———————————————————————————————

The next steps for the HS model, which include building the total chi-

square, likelihood, prior, posterior, running MCMC, and generating the

triangle plot, are identical to those for the AB model, with the following

substitutions: b → µ, HCC AB(acc, H0,Ωm,0, b) → HCC HS(acc, H0,Ωm0, µ),

fs8RSD AB(arsd,Ωm,0, σ80, b) → fs8RSD HS(arsd, H0,Ωm,0, σ8,0, µ), and finally

mag AB(a sn, H0,Ωm,0,Mb, b) → mag HS(a sn, H0,Ωm,0,Mb, µ).
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