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Resumo

O fato de que as equações de campo de Einstein conectam a geometria do espaço-
tempo à contribuição total dos componentes escuros do substrato cósmico, ao invés de
suas contribuições individuais, pode ser entendido como uma degenerescência no setor
escuro do Universo. Consequentemente, modelos cosmológicos que apresentam decom-
posições distintas do setor escuro, mantendo valores idênticos da soma dos componentes
escuros do tensor energia-momento, permanecem indistinguíveis mediante observações
baseadas em medidas de distâncias. Nesta tese, investigamos aspectos cosmológicos dessa
degenerescência do setor escuro no contexto de duas abordagens: (i) um vácuo intera-
gente; (ii) um modelo de energia escura dinâmica. No primeiro trabalho, derivamos e
estudamos alguns aspectos físicos de uma parametrização dinâmica uniparamétrica da
energia escura, obtida a partir de um modelo interagente de gás de Chaplygin general-
izado não adiabático. Determinamos que este modelo dinâmico não admite valores de
energia escura fantasma. Realizamos uma análise de seleção de parâmetro utilizando os
mais recentes dados observáveis disponíveis publicamente, como os dados do Planck 2018,
eBOSS DR16, Pantheon e KiDS-1000. Sob essa análise, nós avaliamos como nosso mod-
elo responde à tensão de S8 ” σ8pΩm{0.3q0.5, uma quantidade cosmológica associada ao
crescimento de perturbações cosmológicas. Encontramos que os dados de radiação cós-
mica de fundo (CMB) impõe fortes vínculos para este modelo e concluímos que a tensão
de S8 pode ser aliviada apenas para valores de parâmetros para os quais o modelo se
aproxima do ΛCDM. No segundo trabalho, exploramos a possibilidade de romper essa
degenerescência através da utilização de medidas de fração de massa de gás observada em
aglomerados galácticos gravitacionalmente relaxados e massivos. Esses dados são particu-
larmente interessantes para esse propósito, visto que eles isolam a contribuição de matéria,
possivelmente permitindo uma quebra da degenerescência. Estudamos o caso especial do
wCDM e sua contrapartida interagente. Comparamos os resultados obtidos para as duas
descrições do setor escuro com uma análise não-paramétrica obtida através de Proces-
sos Gaussianos. Apesar de que essa degenerescência pode ter sido desfeita do ponto de
vista téorico, encontramos que os dados atuais de fração de massa de gás aparentam ser
insuficientes para uma conclusão determinante sobre qual cenário cosmológico é favore-
cido, mesmo quando combinado com medidas de Supernova tipo Ia (SN Ia), Oscilações
Acústicas de Bárions (BAO) e CMB.
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Abstract

The fact that Einstein’s equations connect the space-time geometry to the total dark
content of the cosmic substratum, but not to individual contributions of its constituents,
can be translated into a degeneracy in the cosmological dark sector. Consequently, cos-
mological models featuring distinct decompositions within the dark sector, while sharing
identical values for the sum of dark components’ energy-momentum tensor, remain indis-
tinguishable when assessed through observables based on distance measurements. In this
thesis, we investigate cosmological aspects of this degeneracy in the dark sector in the
context of two approaches: (i) an interacting vacuum; (ii) a dynamical dark energy model.
In the first work, we derive and study some physical aspects of a varying one-parameter
dynamical DE parameterization, obtained from an interacting non-adiabatic generalized
Chaplygin gas (gCg) model. We find that this dynamical model does not allow phantom
crossing. We perform a parameter selection using the most recent publicly available data,
such as the data from Planck 2018, eBOSS DR16, Pantheon and KiDS-1000. In light
of this analysis, we assess how our model responds to the S8 ” σ8pΩm{0.3q0.5 tension, a
quantity associated to the growth of cosmological perturbations. We find that the data
for the cosmic radiation background (CMB) impose strong constraints on the model and
conclude that the S8 tension can be alleviated only for values of the model parameters
very close to the ΛCDM cosmology. In the second work, we explore the possibility of
breaking this degeneracy by using measurements of the gas mass fraction observed in
massive and relaxed galaxy clusters. This data is particularly interesting for this purpose
because it isolates the matter contribution, possibly allowing the degeneracy breaking. We
study the particular case of the wCDM model with its interactive counterpart. We com-
pare the results obtained from both descriptions with a non-parametric analysis obtained
through Gaussian Process. Even though the degeneracy may be broken at background
level from the theoretical point of view, we find that current gas mass fraction data seems
to be insufficient for a final conclusion about which approach is favored, even when com-
bined with Supernovae type Ia (SN Ia), Baryon Acoustic Oscillations (BAO) and CMB
measurements.
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Introduction

Since the dawn of mankind, we looked up to the sky, wondering about our existence
within the cosmos. As humanity evolved, so did our questions: “Is the Universe infinite
in time? Or did it have a beginning?” “What is it made of?” “Do we exist in a special
place in the Universe?”. This study of the origin, properties and evolution of the Universe
constitutes the cosmology. Bounded by our scientific development, questions about our
Universe remained in the realm of philosophical discussions for centuries. It was in 1915
that Albert Einstein revolutionized cosmology by developing the general relativity theory
(GR) [1]. In its proposal, the GR portrays time and three-dimensional space as a single
entity, the spacetime, while gravity is interpreted as the curvature of said spacetime.
This concept was fundamental to explain some local properties at larger scales, including
the correction of Mercury’s orbit in our own solar system [2]. To this day, GR has
achieved outstanding success among several observational and experimental tests (see,
e.g., [3, 4]). Furthermore, GR was the cornerstone to the first physical description of
our Universe. More specifically, Einstein described a static Universe, composed only of
matter and curvature in a homogeneous and isotropic spacetime. Interestingly, this model
of the Universe, albeit based on the observations at the time, evolved into a calamitous
state: without anything to stop matter from clustering, the equations lead to a collapsing
Universe. This compelled Einstein to introduce a term in his field equations in order to
prevent gravity to triumph. The term in question, Λ, received the name of cosmological
constant [5].

However, in 1922, Alexander Friedmann pointed out, from Einstein’s field equations,
that this disastrous fate of the Universe could be avoided, without the need for a cosmo-
logical constant, if one assumes the Universe as dynamic, i.e., that spacetime is allowed
to expand and contract [6]. Friedmann was later proved to be correct about his sup-
position, when Edwin Hubble observed galaxies that were moving with radial velocities
proportional to their distances, showing that the Universe was, in fact, expanding [7].

The second half of the 20th century was marked by a succession of important events
in cosmology. The first one being the accidental detection of the Cosmic Microwave
Background (CMB) [8], an observational snapshot of the primordial Universe, which had
already been predicted in the 1940s, by George Gamow, Ralph Alpher and Robert Her-
man, as a remnant of the process of generation of elements in the early Universe, the
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Big Bang nucleosynthesis [9, 10]. Alternatively, in 1970, Vera Rubin and William Kent
Ford noticed that the rotation curve of Andromeda galaxy (M31) decreased slower than
expected for greater distances from the galactic nucleus, where peculiar motions are ex-
pected to be small, indicating the presence of undetectable matter at the halo of such
objects [11]. Furthermore, as early as 1933, Fritz Zwicky had already demonstrated,
through the virial theorem, that the mass of the Coma galaxy cluster also contained a
larger amount of matter (around 400 times more) than the visible matter obtained from
astronomical observations [12]. This type of matter, that so far can only be detected by
its gravitational effects, is the so-called dark matter (DM), a term coined by Fritz Zwicky
himself.

Finally, in the late 90s, two separate observational groups, the High-z Supernovae
Search Team and the Supernovae Cosmology Project, independently presented distance
measurements obtained from Supernovae Type Ia (SN Ia) that suggested that the Uni-
verse was undergoing a period of cosmic acceleration [13, 14]. This scientific discovery,
however, was in conflict with the idea of an expanding decelerated Universe accepted at
the time. More importantly, there wasn’t a cosmic component that could be responsible
for generating an accelerated expansion of the current Universe. In light of this newfound
evidence, two major routes emerged in the literature. The first one provides modifications
to GR, known as modified gravity. The second introduces another “dark” component to
the Universe, the dark energy (DE), an exotic constituent with negative pressure which
causes the Universe to expand with positive acceleration. On this basis, one particular
model gained relevancy in the cosmological scenario: the ΛCDM model.

In the ΛCDM, the dark energy is described by a cosmological constant Λ1, whose
equation of state is pΛ “ ´ρΛ, with pΛ and ρΛ the pressure and energy density of the
fluid, respectively. Furthermore, the remaining letters, “CDM” stand for the dark matter
in its non-relativistic, i.e., “cold”, form, which is the prevalent form of DM in the Universe.
From an observational standpoint, technological innovations in the past 50 years or so,
have paved the way for high quality ground and space experiments, allowing us to describe
the Universe with astonishing precision. Moreover, the accumulation of such observations
were instrumental to the triumph of the ΛCDM as the standard cosmological model [15–
21]. In particular, the current measurements place dark energy as contributing with
„ 70% of the energy density of the Universe, while dark matter corresponds about 25%

of the total energy density. The last 5 or so percent are divided between baryonic (i.e.,
ordinary, non-dark matter) and radiation, the latter with ă 1%.

Despite its undeniable success in explaining the observed Universe, there are also
instances where the ΛCDM fails, e.g., the notorious cosmological constant problem
(CCP) [22], as well as the recent cosmological tensions (see, e.g., [23]). These open

1The cosmological constant was conveniently brought back with the discovery of recent acceleration
of the Universe.



3

problems create an urge to explore cosmologies beyond ΛCDM. To some extent, these
difficulties arise due to our ignorance concerning the dark sector of the Universe, i.e., the
dark matter plus dark energy components. In particular, although we are able to obtain
cosmological quantities associated to the dark sector, these measurements are obtained
through indirect observations, i.e., through gravitational interactions, meaning we are
unable to discern the individual contributions of the dark constituents.

This fact is reflected in Einstein’s field equations, and manifests as a degeneracy in the
dark sector, the dark degeneracy [24–29]. As a consequence, models degenerated through
the dark degeneracy will exhibit indistinguishable features, such as similar expansion rate,
Hpzq. On the other hand, as argued in Ref. [30], the conditions imposed by this degeneracy
enable us to construct a mapping between degenerated pairs, providing a route to explore
the dark degeneracy.

In this context, the work presented in this thesis aims to investigate the aforemen-
tioned aspects of the dark degeneracy, exploring the viability of cosmological degenerated
scenarios as well as investigating a route for breaking the degeneracy at background level.
In order to provide powerful statistical results, we resort to Monte Carlo techniques (MC),
which have become a robust tool for parameter estimation in cosmology, widely used in
the majority of cosmological experiments analyses. Following [30], we examine the dark
degeneracy through the lens of two approaches. The first one consisting of cold, pressure-
less, dark matter and a dark energy parameterized by a time-varying equation of state
wxpaq. The second approach is the one where we consider a coupling between the dark
matter and a cosmological constant wx “ ´1.

The thesis in question is divided as follows. In Chapter 1, we present an overview
of the fundamentals and current state of cosmology. Chapter 2 considers the possibility
of an interacting dark sector, which will be relevant when discussing the dark degener-
acy. Chapter 3 properly introduces the concept of a degeneracy in the dark sector and
presents some cases of degenerated models. Chapters 4 and 5 present the results of our
investigations, published in Ref. [31] and [32]. In Chapter 4, we conduct a case study
for a dynamical model from an interacting decomposed generalized Chaplygin gas (gCg),
using a mapping from interacting to dynamical approach. In Chapter 5, we perform a
test to break the dark degeneracy using measurements of gas mass fraction data. Finally,
we state our final remarks in Chapter 6.
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Chapter 1

The current state of cosmology

Cosmology is an extensive and complex subject. A careful, detailed review of cos-
mology would take much more than just a single chapter in a book. In this chapter, we
merely aim to get acquainted with the necessary concepts and topics discussed through
this thesis. Aside from updates from recent cosmological data, everything presented here
can be found in standard cosmology textbooks such as [33–35], reviews and lecture notes,
e.g., [22, 36] and [37], respectively. This chapter is divided in two parts: in the first one
we present the fundamentals of cosmology, starting from the metric and closing with the
perturbed equations; the other half is mostly dedicated to the types of information that
can be extracted from observations, and how this data affects what we know about the
Universe.

1.1 Modern cosmology

1.1.1 The geometry of the Universe

In order to properly introduce the physical properties of the Universe, we must first
define the distance between two points in space, that is, the metric. A metric that accu-
rately describes the observed Universe should not only describe a 3-dimensional spacetime,
but also incorporate some of its features. For instance, at large scales (» 100Mpc) the
Universe is statistically both homogeneous and isotropic. Homogeneity means that the
Universe appears the same in every point, while isotropy means it looks the same at every
direction (see Fig. 1.1). A homogeneous Universe does not imply an isotropic Universe.
However, an isotropic spacetime, along with the supposition that there is no privileged
observer in the Universe, necessarily mean that the Universe is homogeneous. The hy-
pothesis that the Universe is both homogeneous and isotropic is formally known as the
cosmological principle (CP).

On the other hand, observations from the past century indicated that the Universe
itself is expanding [7]. Combining these aforementioned characteristics, the most general

5
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Figure 1.1: Left: a homogeneous, but not isotropic space in two dimensions. Right: an
isotropic, but not homogeneous two-dimensional space . Adapted from [38].

metric to obey Einstein’s equations for general relativity while considering the CP and
a dynamical Universe is the Friedmann-Lemaître-Robertson-Walker metric, or simply
FLRW. In hyperspherical coordinates, the line element for FRLW is given by:

ds2 “ ´c2dt2 ` aptq2
”

dχ2
` S2

kpχqdΩ2
ı

, (1.1)

Skpχq is given by:

Skpχq “

$

’

’

’

&

’

’

’

%

R0 sinhpχ{R0q, if k “ ´1

χ, if k “ 0

R0 sinpχ{R0q, if k “ `1.

(1.2)

With dΩ2 “ dθ2 ` sin2pθqdϕ2 and the chosen metric signature is p´,`,`,`q. Here, c is
the speed of light1, t is the cosmic time and aptq is the scale factor, which is dimensionless.
The latter quantifies how much the Universe has expanded (or contracted) with time, and
is normalized at the present time: apt “ t0q “ 1, with t0 is the age of the Universe today.
Furthermore, since we assume the CP, the curvature of the spacetime is determined by
the constant k, which can take values 0,`1 or ´1 for flat, spherical and hyperbolic spaces,
respectively. R0 is the (physical) curvature radius today. χ is the comoving coordinate,
and relates to the usual radial coordinate through dχ “ dr{

a

1 ´ kr2{R0. If the observers
are in a referential in rest of the cosmic expansion, they are called comoving observers.
Since comoving observers experience an uniform expansion, any distance measured within
this referential remains constant with time, and is called comoving distance. Additionally,
the time measured by a comoving observer is referred to as the proper time.

1.1.2 Distances

In a Universe capable of expanding or contracting, determining distances is not a trivial
task. So far, we’ve seen the comoving distance, χ, that does not change with respect to
time. For a time interval dt between the emission of the photon and its detection at t0,

1From now on, c “ 1
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the comoving distance is calculated by

χptq “

ż t0

t

dt1

apt1q
. (1.3)

Additionally, we can define the proper distance, dP :

dP ptq “ aptqχ, (1.4)

which gives us the physical distance at a given time t. Just like physical distances grow
with time, the physical wavelength of a photon traveling through the Universe is affected
by the Doppler effect. Suppose a photon is emitted at a time te with wavelength λe and
observed today at t0 with λ0. The cosmological redshift z caused be the expansion of the
Universe will be given by:

1 ` z “
λ0

λe

, (1.5)

and is related to the scale factor through

apzq “
1

1 ` z
. (1.6)

Noticeably, higher redshifts mean we are looking further in the past of the Universe, while
we expect the redshift for objects nearby to be close to zero. It is convenient to express
distances in terms of the Hubble rate, which is the relative expansion rate of the Universe:

Hpaq ”
9a

a
, (1.7)

where dot represents the derivative in relation to time t. For the present time, H0 receives
the name of Hubble constant. Therefore, we can rewrite Eqs. 1.3 and 1.4 as the following

χ “

ż z

0

dz1

Hpz1q
, (1.8)

and
dP “

1

p1 ` zq

ż z

0

dz1

Hpz1q
, (1.9)

where we have used the relation in Eq. 1.6.

Although the aforementioned comoving and proper distances are equally correct, they
represent the distance at a fixed time. Therefore, they are not measurable, since the
quantity we are trying to determine is changing in time. In practice, we must be able to
determine the distance to an object through observations. One possible way of achieving
this is through the luminosity distance.

For luminous objects with uniform energy flow, the flux, that is, the energy/area/time
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decays with the square of the distance:

F “
L

4πd2
, (1.10)

where L is the luminosity, the energy/time emmitted by the source. Evidently, this
distance d increases with time. For the FRLW metric, d is given by the proper distance
Skpχq, which is called the metric distance, dM :

F “
L

4πd2M
. (1.11)

Moreover, we must also account for two different effects of the expansion of the Universe
in the flux. First, a photon emitted at te and detected t0 looses energy through redshift:

E0

Ee

“
hλe

hλ0

ñ
E0

Ee

“
1

p1 ` zq
, (1.12)

where h is the Planck constant. On the other hand, the distance between two consecutive
photons emitted increases as they travel across space. Let the initial time separation
be δte. By the time the photons arrive, the Universe increased p1 ` zq, and the time
separation between the photons will be δt0 “ δtep1 ` zq. Thus, the rate at which the
photons arrive is reduced by 1{p1 ` zq, as is the flux. Finally, the resulting observed flux
is

F “
L

4πd2Mp1 ` zq2
“

L

4πd2L
. (1.13)

Here, dL is the luminosity distance. The luminosity distance is useful because it relies on
the the flux of the observed object in order to obtain distance measurements. However,
Eq. 1.13 requires us to know the luminosity of the source L, an intrinsic property, before-
hand. That is made possible through objects whose brightness are predictable, known as
standard candles. One typical example of standard candles is the type Ia supernovae, an
astronomical event caused by a particular set of objects. The physics behind standard
candles will be discussed in greater detail in Sec. 1.2.1.

Alternatively, for objects that occupy an angular size in the sky, we can calculate the
angular diameter distance, dA. If the angular size subtended by the source is δθ, then

δθ “
l

dA
, (1.14)

with l the true size of the object. We have used the small angle approximation sinpδθq «

δθ, which holds for the typical angular sizes in cosmology (δθ ! 1 in radians). Much like we
need the standard candles to determine the luminosity distance, for the angular diameter
distance we have the so-called standard rulers. Standard rulers represent characteristic
scales of the Universe that can be determined through cosmological quantities.
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1.1.3 Friedmann equations

The theory of general relativity (GR) defines gravity as a distortion in spacetime
caused by the presence of physical constituents of the Universe. This fundamental relation
is quantified through Einstein’s field equation:

Gµν “ 8πGTµν , (1.15)

with G the universal gravitational constant. Gµν is known as Eintein’s tensor:

Gµν “ Rµν ´
1

2
gµνR, (1.16)

with Rµν , R and gµν are the Ricci’s tensor, Ricci’s scalar and the metric, respectively.
Finally, Tµν is the energy-momentum tensor, a rank 2 tensor that is related to the cosmic
components. Once we impose the conditions of spatial symmetry from the cosmological
principle, that is, the homogeneity and isotropy, the energy-momentum tensor assumes
the simple form of a perfect fluid:

T µ
ν “

»

—

—

—

—

–

´ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

fi

ffi

ffi

ffi

ffi

fl

, (1.17)

where ρ is the energy density and p is the energy pressure of the fluid. For Eq. 1.17,
the relation T µ

ν “ gµλTλν was used to raise an index. Additionally, for an independent
component, the conservation equation applies

9ρ ` 3
9a

a

´

ρ ` p
¯

“ 0. (1.18)

For a perfect fluid, we have the following equation of state (EoS)

p “ wρ, (1.19)

with w the equation of state parameter. Therefore, the general solution for ρ of the i-th
fluid when w is a constant is simply

ρipaq “ ρi,0a
´3p1`wq. (1.20)

Combining Einstein’s field equations (Eq. 1.15) with the FRLW metric, we arrive to two
equations, the first one being the Friedmann equation

´

9a

a

¯2

“
8πG

3
ρ ´

k

a2R2
0

. (1.21)
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The second relation is known as the acceleration equation:

:a

a
“ ´

4πG

3
ρ
´

1 ` 3w
¯

, (1.22)

from what it is possible to see that for w ă ´1{3 we have an accelerating Universe, that
is, :a{a ą 0.

Equations 1.21 and 1.22, along with Eq. 1.18, are enough to describe the evolution of
the Universe at scales where the PC is valid. Here, ρ and p are the total energy density
and pressure of all cosmic constituents, that is ρ “

ř

i ρi, p “
ř

i pi, with subindex i

related to the i-th component. Before describing the components of the Universe, it is
useful to define the current energy density for a flat Universe (k “ 0 in Eq. 1.21) as the
critical density

ρcrit ”
3H2

8πG
, (1.23)

as well as the density parameter for the i-th perfect fluid:

Ωi ”
ρi
ρcrit

. (1.24)

We can also relate the total density parameter Ω to the curvature of the Universe:

Ω

$

’

’

’

&

’

’

’

%

ą 1, if k “ ´1

“ 1, if k “ 0

ă 1, if k “ `1.

(1.25)

1.1.4 Cosmic components

Friedmann equation, paired with the continuity equation, determine the evolution of
the Universe at large scales, where the CP is valid. As we can see, this evolution depends
on the constituents of the Universe. Below, we describe three crucial components of the
cosmic inventory.

• Radiation: We refer to radiation as particles that have ultra-relativistic velocities,
for which the kinetic energy dominates. As of today, radiation in the Universe is
mostly present in photons but also constituted by a small percentage of relativistic
neutrinos. Electrodynamics states that the radiative pressure is one third of the
energy density pr “ 1{3ρr. Thus

wr “
1

3
, (1.26)

and solving equation 1.20 for radiation:

Ωr “
Ωr,0a

´4

H2{H2
0

. (1.27)
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• Non-relativistic matter: For particles at non-relativistic velocities, the energy
density is much larger than the pressure so that we can approximate pm “ 0. This
applies for baryonic matter2 and is often used to describe (cold) dark matter as
well, as will be detailed later in Sec. 1.2.2. In this case, the matter contribution can
be expressed as ρm “ ρb ` ρc and pm “ pb “ pc “ 0, where the subscript b and c
represent baryons and cold dark matter, respectively. The solution in terms of the
density parameters for matter is

Ωm “
Ωm,0a

´3

H2{H2
0

. (1.28)

• Cosmological constant: The cosmological constant, also known as Λ, is defined
as an exotic fluid with negative pressure and the following EoS:

pΛ “ ´ρΛ, (1.29)

so that this component is independent of time:

ΩΛ “
ΩΛ,0

H2{H2
0

. (1.30)

As aforementioned, a Universe filled with a fluid with w ă ´1{3 will accelerate,
such is the case for the cosmological constant. In the standard cosmological model,
the cosmological constant is the source of the late time acceleration of the Universe.
Furthermore, a natural candidate for Λ is the vacuum energy, as the vacuum is not
diluted as spacetime expands or contracts. Although quantum field theory predicts
a value for the vacuum energy density, it severely contradicts the current ρΛ,0 values
from observations (see Sec. 1.2.3).

Finally, a Universe composed by radiation, matter and Λ will have the following Friedmann
equation

Hpaq “ H0

a

Ωr,0a´4 ` Ωm,0a´3 ` ΩΛ,0 ` Ωk,0, (1.31)

with Ωk,0 “ ´k
H2

0R
2
0
a´2 the density parameter associated to the curvature. Eq. 1.31 allows us

to see that for different values of scale factor, different components dominate the expansion
rate of the Universe, as illustrated in Fig. 1.2. Each dominating component defines an
epoch. For example, for z from infinity to „ 104 we have a Universe dominated by
radiation, which later turns into a matter dominated Universe. Crossing points between
the curves mark the transition between epochs and when they happen will depend on the

2In cosmology, the term baryonic is used to express particles that compose ordinary matter such as
protons, neutrons and leptons. This is because the particles of the atomic nuclei are overly massive
(„ 104 times) in regards to leptons, and therefore the mass contribution for this type of matter is largely
dominated by baryons.
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Figure 1.2: Evolution of the components of a flat Universe filled with radiation, matter
and the cosmological constant for Ωc,0 “ 0.25, ΩΛ,0 “ 0.70. Figure made with CLASS
code [39].

values of the density parameters of the species. In a general sense, the quantity of every
constituent of the Universe will be deeply related to events of the cosmic history, as well
as structures of the present Universe. Therefore, the density parameters as well as other
equally important parameters, such as H0, compose the set of cosmological parameters
that we need in order to properly describe the Universe.

1.1.5 Perturbed equations

At scales where variations of energy density relative to the mean energy density are
small, i.e., δρ{ρ ! 1, inhomogeneities of the Universe become relevant and we must adopt
a perturbative cosmological theory. In this section, we briefly introduce the necessary
elements for our understanding of structure formation for the dark sector elements. We
limit our discussion to the linear level, and consider a flat FRLW metric, that is, Ω “ 1,
for the background. We refer to the reader to [33] for details on perturbation theory.

The line element (Eq. 1.1) is now:

ds2 “ a2pτqr´p1 ` 2Aqdτ 2 ` 2Bidx
idτpδij ` 2Eijqdx

idxj
s, (1.32)

where τ “ dt{aptq is the conformal time. A,Bi, Eij are functions of (τ, xi) and can be
decomposed into scalar, vector and tensor perturbations. While vector perturbations
decay rapidly with the expansion of the Universe, and therefore are not of interest for us,
the scalar and tensor perturbations cases must be analyzed separately.

• Scalar perturbations: Scalar perturbations of the metric can be described by
the conformal Newtonian gauge, for which the line element ds2 can be expressed in
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terms of the gauge-invariant Bardeen potentials Ψ and Φ [40]:

ds2 “ a2pτqr´p1 ` 2Ψqdτ 2 ` p1 ` 2Φqdx⃗2
s, (1.33)

with τ is the conformal time. In this gauge, Ψ, Φ act as scalar gravitational poten-
tials. The perturbed energy momentum-tensor of the total fluid is

δT 0
0 “ ´δρ, (1.34)

δT 0
i “ pρ ` pqvi, (1.35)

δT i
j “ δp δij ` Σj

i , (1.36)

with δρ and δp the perturbations for the energy density and pressure, respectively.
vi, is the total spatial 3-velocity and Σi

j the total anisotropic shear perturbation, for
which Σi

i “ 0. The linear perturbed Einstein equations will provide the following
relations in Fourier k-space:

´k2Φ ` 3Hp´Φq “ 4πGa2δT 0
0 , (1.37)

k2
p´Φ1

` HpΨq “ 4πGa2pρ ` pqθ, (1.38)

´3Φ2
` 3HpΨ1

´ 2Φ1
q ` 3

´

2
a2

a
´ H2

¯

Ψ ´ k2
pΦ ` Ψq “ 4πGa2δT i

i , (1.39)

´k2
pΦ ` Ψq “ 12πGa2pρ ` pqσ, (1.40)

with prime denoting a derivative in regards to the conformal time and k is the
wavenumber. Here, θ and σ are the defined by

pρ ` pqσ “ ´pk̂ik̂j ´
1

3
δijqΣ

j
i , (1.41)

pρ ` pqθ “ ikjδT 0
j . (1.42)

For a fluid, Eq. 1.42 is simply the divergence of the fluid velocity

θ “ ikjvj. (1.43)

On the other hand, the perturbed conservation equations for the i-th independent
cosmic component are given by the following

δρ1
i ` 3Hpδρi ` δpiq ` pρi ` piqp3Ψ1

` θiq “ 0, (1.44)

rpρi ` piqθis
1
` pρi ` piqp4Hθi ´ k2Ψq ´ k2δpi ` pρi ` piqk

2σi “ 0. (1.45)
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We will be interested in describing the evolution of perturbations of the dark sector,
therefore, we limit our discussion to these components on this section as well. The
conservation equations for are shown bellow.

For CDM, we assume pc “ σc “ 0, so the conservation equations become

δρ1
c ` 3Hδρc ` ρcp3Φ

1
` θcq “ 0, (1.46)

θ1
c ` Hθc ´ k2Ψ “ 0. (1.47)

While for a dark energy component with EoS px “ wxρx, with wx ă ´1{3, we have

δρ1
x ` 3Hpδρx ` δpxq ` ρxp1 ` wxqp3Ψ1

` θxq “ 0, (1.48)

θ1
x `

w1
x

1 ` wx

θx ` Hp1 ´ 3wxqθx ´ k2Ψ ´
k2δpx

ρxp1 ` wxq
` k2σx “ 0. (1.49)

• Tensor perturbations: So far, it has been shown that scalar perturbations are
related to the evolution of the energy density perturbation. Tensor perturbations,
on the other hand, are responsible for the astrophysical phenomenon of gravitational
waves. Considering only tensorial modes of perturbation, the perturbed line element
is given by the following

ds2 “ a2pτqr´dτ 2 ` pδij ` hT
ijdx

idxj
qs, (1.50)

with hT
ij the tensor associated to the tensorial perturbations. Assuming perturba-

tions in the x-y plane, hT
ij takes the form [37]:

hT
ij “

»

—

–

h` hˆ 0

hˆ ´h` 0

0 0 0

fi

ffi

fl

. (1.51)

Finally, Einstein equations can be related to the anisotropic stress for tensorial
perturbations ΠT

ij:
hT
ij ` 2Hh

1T
ij ` k2hT

ij “ 16πGa2ΠT
ij. (1.52)

When the right side of Eq. 1.52 is zero, that is, in the absence of anisotropic stress,
Einsteins equation describe a wave equation, where h`, hˆ are the wave modes.

1.2 The standard cosmological scenario

We shall now describe the physics behind some of the cosmological probes that are
most relevant to the work presented in this thesis.
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1.2.1 Cosmological probes

1. CMB: In the early Universe, at „ 1eV , photons and baryons were tightly coupled
in what can be viewed as a single fluid, the photon-baryon fluid. As the Uni-
verse expanded, the interaction rate of the photons via Compton scattering became
smaller than the expansion rate of the Universe, causing the photons to decouple
from the baryons, thus making the Universe transparent. The thermal radiation
remnant from this decoupling form a background known as the cosmic microwave
background (CMB).

The CMB has a blackbody power spectrum and is observed today at radio spec-
trum with T0 » 2.73K [41]. Aside from the CMB dipole, with |δT {T | „ 10´3 at
pl, bq « p2640, 480q [42], the CMB is highly uniform across the sky, and has small
temperature fluctuations, |δT {T | „ 10´5. This radiation is also polarized, with E
and B-modes, although current observations show B consistent with zero 3 [15]. A
temperature map is shown in Fig. 1.3. The information contained in the tempera-
ture and polarization maps can be described by a two-point correlation function. In
Fourier space, the auto-correlation power spectrum for the temperature takes the
form

CTT
l “

1

2π2

ż

dk

k
Θ2

pk, z “ 0qPRpkq, (1.53)

where Θpk, z “ 0q is the transfer function, while PRpkq “ Aspk{k0q
pns´1q is the

primordial power spectrum. k0 is the so-called pivot scale, and As, ns are the
amplitude of primordial fluctuations, and spectral index, respectively. An image of
this power spectrum is presented in Fig. 1.4. A feature of the CMB power spectrum
is that it contains a signature of oscillations that happened in the photon-baryon
fluid in the primordial Universe, manifested as peaks in the spectrum. The position
of these peaks, as well as their amplitudes, are directly related to the horizon scale
of the Universe at the time of decoupling z “ z‹ « 1100. This decoupling defines a
surface4, known as the last scattering surface, whose physical size is given by:

lA “
π

δθ
“

πp1 ` z˚qdApz˚q

rspz˚q
, (1.54)

the horizon scale is defined as

rspz˚q “
1

?
3H0

ż 8

z˚

dz
a

1 ` 3ωb{4ωγEpzq
. (1.55)

Here, Epzq “ Hpzq{H0 whereas ωb, ωγ are the physical density of baryons and

3This could change for future experiments with enhanced resolution.
4Since the decoupling was a gradual process, what we have in practice is not a single surface, but

many. A more correct term would be layer.
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Figure 1.3: Temperature anisotropies map from Ref. [43]

photons, respectively. They relate to the density parameter by ωi “ Ωih
2 for the

i-th species, where h “ H0{p100 km{s{Mpcq is the reduced Hubble constant.

As we can see from Eqs. 1.54 and 1.55, the position of the CMB peaks can be related
to cosmological parameters such as ωb, ωγ. In the next section, we will present the
constrains on CMB for some cosmological models, such as ΛCDM.

2. BAO: Oscillations in the photon-baryon plasma in the primordial Universe mani-
fested as baryon density waves, the baryon acoustic oscillations (BAO). Soon after
decoupling, the photon drag suffered by the baryons stops, at a time known as the
drag epoch. As a consequence, the density waves stop propagating. The maximum
distance covered by the BAO is defined by the sound horizon at drag epoch:

rs “

ż 8

zdrag

cspzqdz

Hpzq
, (1.56)

with cs the sound speed. By assuming a Universe largely dominated by matter and
radiation at early times, we find the following expression for the sound speed

cs “
1

c

3
”

1 `
3Ωb,0

4Ωγ,0

ı

. (1.57)

The acoustic scale defined by the comoving sound horizon at „ 150 Mpc is present
in the clustering of galaxies as an increase in probability for finding two galaxies
separated at this scale (Fig. 1.5). Thus, the BAO can be used as a standard ruler
to study the properties of the Universe. The BAO signal can be decomposed into
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Figure 1.4: Angular power spectrum for the temperature anisotropies of the CMB. The
data points are shown in red, and a theoretical curve prediction for ΛCDM is presented
as a blue line. The spectrum is given in terms of DTT

l “ lpl ` 1q{2πCTT
l T̄ 2

0 , with T̄0 the
average CMB temperature today. Figure adapted from Ref. [15].

radial (∥) and transversal (K) contributions relative to the line of sight:

r∥ “ p1 ` zqdA, (1.58)

rK “
cz

Hpzq
, (1.59)

where dA is the angular diameter distance. Often times, the measured quantity used
to determine the BAO scale is the averaged spherical distance DV :

DV “ pr2Kr∥q
1{3

“

”

p1 ` zq
2d2Apzq

cz

Hpzq

ı1{3

. (1.60)

3. SN Ia: White dwarfs are stars associated to the final stages of stellar evolution.
These objects are gravitationally governed by the degeneracy pressure of electrons,
their mass limit is determined by the Chandrasekhar limit at „ 1.4M@. If an
astrophysical process, such as mass accretion by a companion star in the stellar
system, happens to surpass the Chandrasekhar mass, the white dwarf enters gravi-
tational collapse, resulting in a thermonuclear explosion known as Supernovae type
Ia (SNIa). The physical energy liberated in this explosion can be calculated from
nuclear processes. By accurately measuring the light curve of SNIa, it is possible
to calibrate them through consecutive methods which form the cosmological ladder
(See e.g. Ref. [45]). The quantity derived from observations is the distance modulus
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Figure 1.5: Large-scale correlation function in redshift-space for the SDSS LGR sample
from Ref. [44]. The BAO peak is located around 100h´1Mpc. The colored curves represent
different cosmological models: Ωmh

2 “ 0.12, Ωmh
2 “ 0.13 and Ωmh

2 “ 0.14 for green, red
and blue, respectively. The magenta line is for a pure CDM model, with Ωmh

2 “ 0.105,
which predicts no BAO feature, as expected.

µ:

µ “ m ´ M “ 5 log
´ dL
1Mpc

¯

` 25. (1.61)

Here, m is the apparent magnitude of the SNIa, while M corresponds to the absolute
magnitude, that is, the magnitude of the object if it is at 10 pc from us. As
mentioned in Sec. 1.1.2, dL is the luminosity distance, which can be rewritten as:

dL “ p1 ` zq

ż z

0

dz1

Hpz1q
, (1.62)

with
Hpzq “ H0

a

Ωm,0a´3 ` Ωr,0a´4 ` ΩΛ,0.

for the flat ΛCDM. Therefore, observations from the SNIa will provide us direct
measurements of Hpzq, thus imposing constrains mainly on H0, but also on the
density parameters for a given cosmological model.

4. Weak lensing: Massive objects on the Universe act as a lens, bending the light
rays of background sources and thus causing distortions to the original source image,
an effect know as gravitational lensing. While bigger distortions are able to produce
multiple images of the source, most of the time, these effect occurs in the form of
weak gravitational lensing, where the direct effect cannot be determined by a single
background source, but rather they are detected in the form of a statistical signal.
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The main goal of studying weak lensing is to provide a mapping from the unlensed
image in the source plane to the distorted image visualized in the sky, and from
that, use it to provide information about cosmological parameters of our Universe.
We can calculate the mapping of the image to the source in terms of the lensing
potential. For the weak lensing regime, this mapping is singular: only one image is
generated for each source.

From an observational point, we cannot directly measure the deflection angle, the
difference from the source to the image. However, the mapping allows us to separate
3 different components, the magnification, and the shear components γ`, γˆ. Mag-
nification is related to effects on the apparent size of the object, brightness and the
number density of galaxies. The shear contributions can be attributed to E-modes
for stretches parallel or perpendicular to the wave vector, and B-modes, which are
stretches at 450 to the wave vector. It is possible to show that B-modes vanish (see
Ref. [34] Ch. 13.5), leaving only E-modes to cosmic shear. Thus, under the small
angle approximation, the lensing power spectrum is given by

CEEplq “ l4
ż χ

0

rcotKpχ1q ´ cotKpχqs
2PΦpk “ l{dA1q

d2A1

dχ1, (1.63)

where χ is the comoving distance. cotKpχq is

cotKpχq

$

’

’

’

&

’

’

’

%

χ´1, if flat

K1{2cotpK1{2χq, if closed

|K|1{2cothp|K|1{2χq, if open.

(1.64)

Here, K “ ´Ωkpc{H0q´2 is the physical curvature. We can rewrite PΦpkq in terms
of the matter density fluctuations from Poisson’s equation:

PΦpkq “

”3

2
ΩmH

2
0 p1 ` zq

ı2

k´4Pδpkq. (1.65)

Thus, Eq. 1.63 becomes

CEEplq “

ż χ

0

rW pχ1, χqs
2 Pδ

d2A1

dχ1. (1.66)

W pχ1, χq is the so-called window function:

W pχ1, χq “
3

2
ΩmH

2
0 p1 ` zq

χ1pχ ´ χ1q

χ
Θpχ ´ χ1q, (1.67)

with Θpχ ´ χ1q the step function.

The statistics of the weak lensing can be applied in many ways, such as galaxy-galaxy
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lensing and power spectrum tomography. For a general idea of these methods,
see Ref. [46]. Nevertheless, Eqs. 1.66 and 1.67 evidence the sensitivity of weak
lensing to the matter density parameter, Ωm. Furthermore, it can also be used
to infer cosmological information about σ8, the amplitude of the power spectrum
at 8h´1Mpc, establishing weak lensing as an important probe to study the matter
content of the Universe.

5. Gas mass fraction: The X-ray emission from the intracluster medium (ICM) in
hot, massive, virialized galaxy clusters can be used as a tool to study their properties,
such as their mass. In this context, a quantity of particular interest is the gas mass
fraction of a cluster:

fgas “
Mgas

Mtot

, (1.68)

where Mgas, Mtot are the mass of the gas and the total mass of the cluster, respec-
tively. One can assume that fgas remains roughly constant in time to constrain
cosmological parameters [47], which has proven to be a good approximation, as hy-
drodynamical simulations suggest that fgas evolution is minimal and that it has low
cluster-to-cluster scatter [48–52]. On the other hand, in order to properly estimate
fgas, X-ray mass measurements for the galaxy clusters are calibrated using weak
lensing mass measurements [53, 54]. The gas mass fraction calculated in a spherical
shell the center of the cluster is given by [55]:

f ref
gas pzq “ KpzqApzqΥpzq

˜

Ωb,0

Ωm,0

¸«

drefA pzq

dApzq

ff3{2

, (1.69)

where the superscript "ref" stands for the fiducial cosmological model in the data
analysis. Kpzq is the X-ray to weak lensing mass relation that is obtained from
calibration:

Kpzq “ K0p1 ` K1zq, (1.70)

and Υpzq accounts for the gas depletion of the cluster to the observer

Υpzq “ Υ0p1 ` Υ1zq. (1.71)

Finally, Apzq the angular correction relative to the cosmological model of reference

Apzq “

˜

HpzqdApzq

Href pzqdrefA pzq

¸η

. (1.72)

The Ωb,0{Ωm,0 ratio present in Eq. 1.69 for fgas allows us to constrain Ωm,0 (or Ωc,0)
given external information on Ωb,0 is provided. Furthermore, as fgas data is sensitive
to distances, it can also be used to constrain dark energy parameters such as the
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EoS parameter wx [55–57].

1.2.2 The ΛCDM model

Cosmological probes like the ones that described in the previous section help us study
physical properties of the Universe. In most cases, however, there is a need to assume a
referential cosmology model beforehand. This particular model, which is the cosmological
concordance model, is the so-called ΛCDM. It assumes general relativity to be correct, and
an FLRW metric. In this scenario, the Universe is presently dominated by a cosmological
constant Λ (wx “ ´1), which corresponds to about 70% of the energy distribution of
the Universe, while the matter content is composed of « 5% of baryons and « 25% of
dark matter. The remaining À 1% is in the form of radiation (Ωr,0 „ 10´5), which as
aforementioned is composed largely of photons and a small percentage of neutrinos.

From an observational perspective, the tightest constrains for ΩΛ comes from CMB
data, more specifically the Planck satellite, providing ΩΛ,0 “ 0.6847 ˘ 0.0073 at 1σ [15]
for the (flat) baseline-ΛCDM with the dataset TT,TE,EE`lowE`lensing, which uses the
temperature and polarization auto- and cross-correlation, as well as lensing corrections.
For SNIa, the latest result comes from Pantheon`& SH0ES sample [16, 21], with ΩΛ,0 “

0.666 ˘ 0.018 at 1σ confidence level (CL) for the flat ΛCDM.

On the other hand, the matter content of the Universe is mostly composed of dark
matter, a type of matter that can so far only be detected through its gravitational effects.
Evidence for the dark matter exists since the 70s for galaxy rotation curves [11], and can
be supported today by different astrophysical objects and cosmological probes of distinct
origin [15–20]. Although the nature of the dark matter remains an unsolved problem
in cosmology and particle physics, some of its proposed candidates include weakly inter-
active massive particles (WIMPs), axions, primordial black holes and massive compact
halo objects (MACHOs). We refer to [58, 59] for a review on dark matter and possi-
ble candidates. The dark matter in the Universe is largely in its non-relativistic form,
the cold dark matter (CDM). In this context, constrains for the dark matter density
parameter Ωc,0 (or ωc,0h

2) and Ωb,0 are given mainly by CMB measurements, SNIa sam-
ples, and redshift surveys. Just as in the case for dark energy, the best measurement is
found by Planck data [15] for TT,TE,EE`lowE`lensing as ωc,0h

2 “ 0.1200 ˘ 0.0012 and
ωb,0h

2 “ 0.02237 ˘ 0.00015 for the physical baryon density. The latter is also compatible
with results from BBN at 2σ. Additionally, the Pantheon` found Ωm,0 “ 0.334˘0.018 at
1σ when in combination with SH0ES host Cepheid calibration [16]. Recently, the DESI
survey reported Ωm,0 “ 0.295 ˘ 0.015, the newest measurement of Ωm,0 up to date [60].
Similar results can also be found for other cosmological probes [17–20, 57], as well as in
combination with other probes [61]. A figure of constraints for ΩΛ and Ωm for CMB, BAO
and SNIa is presented in Fig. 1.6.
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Figure 1.6: Constrains at 1σ and 2σ for ΩΛ and Ωm from SDSS DR16 (BAO), Planck
DR3 (CMB) and the Pantheon` sample (SNIa). Pantheon` provides results for both
statistic and systematic uncertainties. Vertical lines separate parameter regions for which
the Universe is accelerating and/or flat. From Ref. [16]

Finally, results for ΛCDM with free curvature ΩK lie mostly from CMB measurements
and redshift surveys. The best constraint is ΩK “ ´0.0000 ˘ 0.0018 at 68% confidence
level from Planck data in combination with eBOSS and Pantheon data [15, 62], meaning
a spatially flat Universe at 2% accuracy. While eBOSS data alone also agrees with an
euclidean Universe at 1σ, Planck data alone shows preference for a closed Universe at 3σ,
with ΩK “ ´0.044`0.018

´0.015. KiDS-1000 finds ΩK consistent with zero at 68% confidence level
as well [63]. Nevertheless, a flat Universe is compatible with predictions from inflationary
model.

1.2.3 Open problems in current cosmology

Although the tremendous success of the ΛCDM in explaining several aspects of the
Universe in different scales is undeniable, it fails to answer certain questions, the most
notorious being the so-called cosmological constant problem (CCP) [22]. As aforemen-
tioned, the most natural candidate to the cosmological constant Λ is the quantum energy
density associated with the vacuum. While a theoretical value can be estimated through
the quantum field theory (QFT) from the zero-point energy [64], an experimental value
can also be obtained from cosmological observations such as [15]. The problem lies in the
outstanding disagreement between those values:

ρΛ,QFT

ρΛ,obs
„ 10120, (1.73)
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Figure 1.7: H0 measurments from different cosmological probes, separated by early and
late Universe. While early-type data preffers lower values (H0 „ 67.4 km{s{Mpc), late-
type typically finds H0 ą 70 km{s{Mpc. Figure from Ref. [66]

where "obs" and "QFT" stand for the observed and the QFT values, respectively. This
mismatch strongly suggests that there is a mistake in either the theoretical or experimental
value, that the vacuum is not the cosmological constant, or rather, that the dark energy
for our Universe must not be in the form of a cosmological constant after all. Another
issue that arises with the ΛCDM is the cosmic coincidence [65]. It concerns the fact that
matter and Λ energy densities are of the same order at the present time, while radiation
and curvature are at least 2 orders of magnitude lower. In fact, at the Planck scale
(a « 10´32) their ratio is ρΛ{ρm « 10´96. Although the coincidence problem can be
interpreted as a consequence of the initial conditions of the Universe, it could also hint to
a mechanism that establishes a relation between the two components.

Lastly, the remaining major issue with the standard cosmological scenario is the cos-
mological tensions. Despite the fact that cosmological probes largely agree with respect
to the values of the density parameters, that is often not the case for the Hubble constant,
H0. In particular, Planck satellite reports H0 “ 67.36 ˘ 0.54 km{s{Mpc [15] at 1σ for the
flat ΛCDM, while Pantheon`& SH0ES finds H0 “ 73.6˘1.1 km{s{Mpc [16] at 1σ as well,
which translates to a « 5σ tension. This trend repeats for other experiments of the early
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versus late Universe, and does not vanish even for joint analysis, receives the name of
Hubble tension. Efforts of solving the Hubble tension through systematic effects, along
with a plethora of cosmological models have been made in the past years without much
success (See Ref. [23] for an extensive review of this topic). A figure that illustrates dif-
ferent values for H0 from the most relevant observational probes can be seen in Fig. 1.7.A
similar effect, although less critical, happens for the σ8 (or S8), with tensions of about
2 ´ 3σ when compared to the latest CMB data [18–20, 63, 67–70].

1.3 Beyond ΛCDM

The issues discussed in the previous section demonstrate the urge for a new cosmolog-
ical model. In general, one can approach modifications for cosmology through two routes:
firstly modifying the gravitational theory, that is, assuming that the General Relativity
theory must be extended. These are referred to as modified gravity theories (see e.g. [71]
and references therein). The second path consists on formulating new theories for the
dark components of the Universe, mainly to the dark energy component. In this thesis,
we rely on the latter, focusing on dark energy theories to tackle the open problems in
cosmology.

In this context, several different dark energy theories have been proposed in the liter-
ature. The most trivial way to modify dark energy is to simply leave wx “ w0 as a free
parameter, with w0 a constant, but not necessarily ´1. The constraints for this particular
model are vast, and mostly place w0 « ´1, close to ΛCDM [16, 60, 61], although in some
cases, such as CMB`BAO, is also possible to find a preference for phantom dark energy
(w0 ă ´1) [15, 57, 60]. Another important class of dark energy theory comes from con-
sidering dark energy to evolve with time, wx “ wxpaq. Many parameterizations have been
proposed in the literature, such as the Barboza-Alcaniz parameterization [72], but the
most explored one is the Chevallier-Polaski-Linder (CPL) [73, 74]. For the CPL, the wxpaq

is given by wxpaq “ w0 `wap1´ aq, with w0, wa constants, for which Pantheon`& SH0ES
finds w0 “ ´0.93 ˘ 0.15 and wa “ ´0.1`0.9

´2.0 [16]. More DE models include treating the
dark energy as a scalar field, such as quintessence models [75]. Early dark energy models
have also been proposed as an attempt to solve the Hubble tension [76]. Finally, one
can also consider the possibility of an interactive dark sector. The latter is part of the
discussion of this thesis, and we’ll dedicate the next chapter to motivating this hypothesis.



Chapter 2

Interactions in the dark sector

In the previous chapter, we presented the success of the standard cosmological model,
ΛCDM, along with instances where it fails to explain certain aspects of the Universe.
Among those problems, we mentioned the Coincidence Problem (CP), which concerns
the ratio of (ordinary and dark) matter and dark energy. Although the severity of the
CP is scale dependent (see e.g. [77]), the question remains: are we experiencing an unique
moment of the Universe? Or is there an underlying reason for r “ Ωm/ΩΛ to be roughly
one today? One could explore alternative cosmologies to solve, or at least alleviate the
CP.

In this context, models that consider an additional, non-gravitational coupling in the
dark sector, i.e., between dark matter and dark energy, could offer a natural explanation as
to why the quantities of DE and DM are similar in the present. Nevertheless, interacting
cosmologies can be investigated as an alternative to the ΛCDM, and in some cases it is
possible to alleviate the H0 and σ8 tension. Along this chapter, we’ll review a series of
coupled dark sector scenarios, focusing on phenomenological models. We’ll present the
general equations, some direct physical consequences and how various datasets can favor
or disfavor this class of model in comparison to the ΛCDM.

2.1 Phenomenological models: General equations

When dealing with the dark sector, we often assume DE and DM to be indepen-
dent components for two main reasons: (i) for the sake of mathematical simplicity when
solving our equations; and (ii) the unknown nature of these components refrain us from
formulating a detailed interaction theory at a particle level without making a series of
assumptions. Interestingly enough, the possibility of an interaction in the dark sector has
been suggested around 40 years ago [78–80] in the context of an exotic cosmic component
such as the cosmological constant coupled to the other constituents of the Universe. As
of today, this hypothesis cannot be discarded a priori and can be endorsed by theoretical
arguments such as the holographic principle [81]. In general, one can explore a coupling

25
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between the dark components, i.e., dark matter plus dark energy, with radiation and/or
baryonic matter in a so-called “fifth force” but not only this class of models offer more
complexity, they are hard to deal with as they directly affect the growth of structure in
a significant manner [82]. For this reason, we opted to limit the discussion of this thesis
to models with energy and/or momentum exchange between dark matter and dark en-
ergy only. That is, the equations for radiation and baryons remain unaffected and their
evolution can be described just as in Chapter 1, by the usual ρr 9 a´4, ρb 9 a´3 for the ra-
diation and baryons, respectively. We note that this is a reasonable framework, given that
interactions of the DE with baryons, if existent, are constrained by local gravity [83, 84].
Likewise, a dark energy coupled with radiation would imply that photons would not fol-
low a geodesic path, something that is well established through various tests. Lastly, we
resort to a phenomenological approach for a coupled dark sector, as to avoid a detailed
interacting physical description of the model at a microscopic level.

On this basis, several forms of interaction are present in the literature and we refer the
reader to [85–87] and references therein for a general review. Some mainly formulated
for mathematical simplicity, e.g., Q9Hpρc, ρxq [29, 88–92], while others are inspired by
physical theories, such as vacuum decay [93, 94], or Q9Γpρc, ρxq [95–97], resembling re-
heating models [98]. The assumed form of the dark energy, be it a fluid or scalar field [99],
for example, will also lead to different classes of coupled models. In the case of a fluid,
the choice the equation of state parameter wpaq, wx “ ´1 [29, 100], a constant EoS [88]
or time-dependent parameterizations [96, 97], is also be necessary in order to define the
interacting kernel Q. Alternatively, from a particle physics standpoint, an interaction in
the dark sector can be approached by quantum fields, including a standard scalar de-
scription, k-essence and tachyons (see [85] for details). Moreover, one can always expand
the possibilities of an interacting model by adding curvature [101], considering neutri-
nos [102], anisotropic stress [103], a variable adiabatic sound speed for dark energy [104],
considering non-linear dependence of (ρc, ρx) [105], elastic coupling of dark matter and
dark energy [106]) and so on. Evidently, the possibilities of describing an interacting
dark sector are numerous, and although we cannot easily discard this hypothesis, we can
investigate its physical limitations. One important aspect is the stability of the solutions
for the model in question: at background level, we must ensure a positive energy den-
sity for both dark constituents; at perturbative scales, the biggest problem arises from
instabilities growing at linear level.

Moreover, we search for models that can alleviate of solve the coincidence problem.
More often than not, this involves finding the so-called attractor solutions for the system,
that is, solutions for which the system evolves for a various set of parameters. This ap-
proach ultimately avoids the fine-tunning associated to CP in non-interactive frameworks.
In general, alleviating the coincidence problem can be achieved by two routes. The first
one being that the model reaches a constant value of the DM/DE ratio, r “ ρc{ρx at late
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times. Another possibility is that the model provides a ratio that varies slower than in the
case for ΛCDM. In either case, the severity of the CP can be quantified through r 9 a´ζ ,
with ζr0, 3s. The closer ζ Ñ 0, the more successful the model is to solving the coincidence
problem. In what follows, we will derive the equations for a general interacting kernel Q
and discuss the general results before studying the particular cases in section 2.2.

2.1.1 Background dynamics

The first thing to change for interacting models are the conservation equations. Now,
the dark components, i.e., dark matter and dark energy are no longer conserved individ-
ually, but are related to the source term, Q. In the covariant form, this becomes:

∇νT
µν
i “ Qµ

i , (2.1)

with i “ c, x and
ÿ

i

Qµ
i “ 0. (2.2)

From Eq. 2.2, it follows that Qµ
c “ ´Qµ

x. In general, we can decompose Qµ
i into parallel

and perpendicular velocities components:

Qµ
i “ Qiu

µ
` F µ

i , (2.3)

where uµ the 4-velocity and F µ
i the energy-momentum transfer, with Fµuµ “ 0.

At background level, Eq. 2.1 for DM and DE become respectively:

9ρc ` 3Hρc “ Q, (2.4)

9ρx ` 3Hp1 ` wxqρx “ ´Q. (2.5)

and Q “ Qc “ ´Qx. We can notice that for Q ą 0, CDM is gaining energy while dark
energy has a net loss, which translates into dark energy creating dark matter. It follows
that the opposite scenario, i.e., Q ă 0, is equivalent to dark matter decay into dark energy.
These statements can be summed up as the following

Q

$

&

%

ą 0, dark energy Ñ dark matter,

ă 0, dark matter Ñ dark energy.
(2.6)

We can compare the standard, non-interacting scenario to the interacting in terms of the
effective equation of state, weff [86]:

weff,x “ wx `
Q

3Hρx
(2.7)
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weff,c “ ´
Q

3Hρc
(2.8)

so that,
9ρi ` 3Hp1 ` weff,iqρi “ 0. (2.9)

With i “ x, c. Therefore, for weff,c ă wc, we have a dark matter that “dilutes” slower
than a´3 and for weff,x ą wx, we have a dark energy that accelerates less than its non-
interacting counterpart (Q “ 0). Thus, for Q ą 0, we’ll have the following:

Q ą 0

$

&

%

weff,c ă wc “ 0, DM dilutes slower than a´3,

weff,x ą wx, DE dilutes faster.
(2.10)

Naturally, the roles are reversed if we change the sign of Q, which is ultimately changing
the direction of the flux of energy for the interaction:

Q ă 0

$

&

%

weff,c ă wc “ 0, DM dilutes faster than a´3,

weff,x ą wx, DE dilutes slower.
(2.11)

From the above conditions, and also from Eqs. 2.15, 2.16, we can predict that Q must
be small, if not vanishing. A large Q, i.e., |Q| " 0, implies a Universe that either never
experienced the matter dominated period (Q ă 0) or the dark energy dominated period
(Q ą 0). Alternatively, we should also expect a low value for Q, due to the great fit of
ΛCDM to observational data, such as the ones introduced in the previous chapter.

Finally, it is useful to combine Eqs. 2.15 and 2.16 to form a differential equation for
the DM/DE ratio r “ ρc{ρx. Let’s start by calculating 9r:

9r “
d

dt

˜

ρc
ρx

¸

, (2.12)

from the chain rule, we have

9r “
9ρc
ρx

´
ρc
ρ2x

9ρx, (2.13)

and we put r into evidence on the right side

9r “ r

˜

9ρc
ρc

´
9ρx
ρx

¸

. (2.14)

We can also write 9r in terms of Q by dividing 2.15 by ρc and 2.16 by ρx:

9ρc
ρc

` 3H “
Q

ρc
, (2.15)
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9ρx
ρx

` 3Hp1 ` wxq “ ´
Q

ρx
, (2.16)

and replacing in Eq. 2.14:

9r “ ´r

«

Q

˜

ρc ` ρx
ρcρx

¸

` 3Hwx

ff

. (2.17)

Additionally, if we write Q “ 3HRpρc, ρxq, with Rpρc, ρxq a function of the densities ρc, ρx,
then we can write Eq. 2.14 in the compact form:

9r ` 3Hrrfprq ` 1s “ 0, (2.18)

with
fprq ” Rpρc, ρxq

´ρc ` ρx
ρcρx

¯

. (2.19)

Equations 2.14, 2.18 and the pair 2.15, 2.16 are similar when describing an interaction in
the dark sector. That is, we are able specify a form on interaction by either choosing a
Q, Rpρc, ρxq or fprq. This will be useful when discussing the dark degeneracy in the next
chapter.

2.1.2 Perturbations and instabilities

Once we reach perturbative level for coupled dark energy models, we should construct
our model with caution in order to avoid instabilities in the structure growth. As argued
in [107], two points deserve special attention. The first one being the covariant form of the
source function Q. When dealing exclusively with the background equations, one could
assume a form of Q and start from Eqs. 2.15 and 2.16. However, we must ensure that
the covariant form Qµ reduces to Q at background level and that is consistent with an
inhomogeneous Universe at small scales. In the event that this form is not well defined,
instabilities may cause this model to become unrealistic, or worse, it’s possible that a
form of Qµ for the ansatz Q is simply not possible. The other aspect we must be aware of
is the velocity at which these inhomogeneities propagate, more specifically their adiabatic
sound speed. The expression for the adiabatic sound speed of a component can be written
in terms of its equation of state:

c2a,i “ wi `
w1

i

p1
i{ρi

, (2.20)

which for a dark energy with constant EoS, w0, it would necessarily mean an unphysical
value for the sound speed, c2a,x ă 0. Therefore, we require c2a,x ą 0, usually c2a,x “

1, as in scalar fields [96, 108, 109]. Since this is directly related to the nature of an
exotic component as the dark energy, this issue also arises in uncoupled models, but it
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gains significance in coupled models, where non-adiabatic perturbations play a big role
in instabilities. For a constant w0, with w0 ‰ ´1, these instabilities can be quantified by
the doom factor, coined in Ref. [87]:

d ”
Q

3Hp1 ` w0qρx
. (2.21)

If this term is positive, perturbations at large-scale will grow exponentially (see Fig. 2.8).
As an example, consider Q “ 3Hξρx, with ξ a constant. In this case, the condition for
d ă 0, means that ξ and p1 ` w0q must have opposite signs.

The perturbed (flat) FRLW conservation equations in the newtonian gauge for a gen-
eral interacting case can be written as the following [30]:

δρ1
i ` 3Hpδρi ` δpiq ` pρi ` piqp3Φ1

` θiq “ aQiΨ ` aδQi, (2.22)

rpρi ` piqθis
1
` pρi ` piqp4Hθi ´ k2Ψq ´ k2δpi ` pρi ` piqk

2σi “ aQiθ ` ak2F , (2.23)

where BiF “ aF i. Following [30], we consider the case wx “ w0 “ ´1, assuming vanishing
isotropic anisotropic stress and pressure perturbation for the dark matter component, that
is, δpc “ σc “ 0. Additionally, as the dark sector as a whole is conserved, δQ “ δQc “

´δQx, F “ Fc “ ´Fx. Taking the aforementioned considerations, the equations for θi,
δi for i “ c, x are reduced to

δρ1
c ` 3Hδρc ` ρcp3Φ

1
` θcq “ ´aQΨ ´ aδQ, (2.24)

θ1
c ` Hθc ´ k2Ψ “ ´

a

ρc
pQθ ` k2Fq, (2.25)

δρ1
x ` 3Hpδρx ` δpxq “ aQΨ ` aδQ, (2.26)

and
θ1
x “ 0. (2.27)

2.2 Specific cases

Now that we’ve established the equations for a general interacting model, our next
step is to define the form of the interaction term, Q. As mentioned in the previous section,
various forms of the source term have been proposed along the years. Among them, two
groups in particular are the most common, and will be discussed in this section. The first
class of interacting phenomenological models is Q “ 3Hrξcρc`ξxρxs, with ξc, ξx constants.
The motivation behind this source term comes from assuming that the interaction must
be a function of the density of the interacting fluid, and expanding it to the first order of
a Taylor expansion. Furthermore, since we expect the interaction to be time-dependent,
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a factor of H is often used in coupling models.
The second class of coupled models discussed here are interactions in the form Q “

3pΓcρc ` Γxρxq, where Γc,Γx are the interaction rates. On contrast to the previous case,
this form of interaction comes from particle physics, more specifically, some reheating
models. Bellow, we’ll review some particular cases that fit into these aforementioned
categories.

2.2.1 Q “ 3Hξρc

Let’s consider an interaction between a dark energy with constant wx “ w0 and
pressureless dark matter for the interaction kernel Q “ 3Hξρc. This model has been
studied in [29, 86, 110–112]. In this case, the solutions for ρc, ρx can be easily calculated.
The conservation equations become [86]:

9ρc ` 3Hρc “ 3Hξρc, (2.28)

9ρx ` 3Hp1 ` w0qρx “ ´3Hξρc. (2.29)

The solution for the above set of equations leads to

ρc “ ρc,0a
´3p1`ξq, (2.30)

ρx “ ρx,0a
´3p1`w0q

`
ξ

pξ ` w0q
ρc,0pa

´3p1`w0q
´ a´3p1´ξq

q. (2.31)

Notice how the solutions Eq. 2.30 and 2.31 reduce to ρc “ ρc,0a
´3 and ρx “ ρx,0 for ξ “ 0

(equivalent of null interaction). Additionally, we have that ξ ‰ 1, since Eq. 2.28 would
imply ρc to be constant in time. While the solution for ρc is positive at all times for any
value of ξ, that is not the case for ρx in equation 2.31. More specifically, we must require
ξ ą 0, as a negative energy density violates the weak energy condition (WEC). This can
be verified through the asymptotic forms for ρx. Let’s take the case of a cosmological
constant, w0 “ ´1 as an example. At late times (a « 1), ρx,0 is the dominant term, which
again is expected as the solution must not deviate much from ΛCDM. On the other hand,
at early times, i.e., a Ñ 0, the solution can be approximated to the following

ρxpa Ñ 0q “ ρx,0 `
ξa´3p1´ξq

p1 ´ ξq
. (2.32)

From what we can see, for ρx to be always positive we must have ξ{p1 ´ ξq strictly
positive, thus ξ cannot take negative values. In practice, this means that in the context
of interaction of the form Q “ 3Hξρc, the flow of energy necessarily manifests as dark
energy forming dark matter. Furthermore, we also arrive to the conclusion that 0 ă ξ ă 1.
Figure 2.1 presents the DE/DM ratio for ξ “ 0.1 in comparison to ΛCDM for this model.
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The sign of the interaction parameter, γ is switched, because the conservation equations
are written with the opposite sign in the paper [29]. A similar image is presented in the
right panel of Fig. 2.6, but now for w0 “ ´1.1, and 3ξ “ 0.001, 0.01, 0.1. In both cases
(w0 “ ´1 and ´1.1), the progression of r in noticeably different than for ΛCDM, even
for smaller values of ξ. In this sense, even if r0 “ ρc,0{ρx,0 is similar in both cosmological
scenarios, i.e., Q “ 3Hξρc and the non-interacting case ΛCDM, and since the evolution
rate of r is smaller for the coupled case, this softens the fine-tuning of the coincidence
problem. In other words, the fact that Ωc,0 and Ωx,0 are similar now is not much of a
coincidence as in the uncoupled case, where the variation of r is greater. This is sometimes
called “soft coincidence” [111]. This simple case is effective to illustrate how the CP can
be approached by interacting dark energy models.

Figure 2.1: DE/DM ratio for Q “ 3Hξρc, with w0 “ ´1 for the dark energy. Our ξ
is equivalent to ´γ in the figure. The curves indicate ξ “ γ “ 0.1 (blue) and the non-
interactive case ξ “ γ “ 0 (black). Taken from Ref. [29].

2.2.2 Q “ 3Hξρx

This model has been extensively studied in the literature [23, 29, 88, 90–92, 101, 112–
115], and has some interesting features. As in the previous case, we’ll consider a interacting
dark energy with constant EoS w0. The solutions for ρc and ρx become, respectively [86]:

ρc “
´ξ

pw0 ` ξq
ρx,0a

´3p1`w0`ξq
`

´

ρc,0 `
ξ

pw0 ` ξq
ρx,0

¯

a´3, (2.33)

ρx “ ρx,0a
´3p1`w0`ξq. (2.34)

Once again, we must establish where an energy violation occurs for these solutions. In
contrast with Q “ 3Hξρc, now ρx is unproblematic, while ρc needs to be looked into. In
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particular, ρc will be zero for [116]

a “

” ξρx,0
pξ ` w0qC

ı
1

3pξ`w0q

, (2.35)

with
C “ 3H2

0

´ξ ` w0Ωc,0

ξ ` w0

¯

, (2.36)

where we used ρx,0 ` ρc,0 “ 3H2
0 , Ωx,0 “ ρx,0{3H2

0 , Ωc,0 “ 1 ´ Ωx,0. At early times, a Ñ 0,
the relevant term is C, therefore, in order for ρc to remain positive, we must have that
ξ ` w0Ωc,0 is positive, so that

ξ ą }w0}Ωc,0. (2.37)

On the other hand, at late times, the second term must remain positive in order to respect
the WEC. This leads to

ξρc,0
ξ ` w0

ă 0, (2.38)

which can only be satisfied for ξ ě 0. This statement can be visualized in figure 2.2,
which illustrates the curves for the WEC violation for past (0 ą a ą 1) and future a ą 1

for w0 “ ´0.8 (quintessence) and w0 “ ´1.2 (phantom). It is important to notice that
the case w0 “ ´1 lies in between the curves for w0 “ ´1.2 and w0 “ ´0.8, meaning a
negative dark matter density is unavoidable in this model. As we can see, negative values
of ξ imply in a future WEC violation, and ξ ą 0 in WEC violation at early times. For
the particular case of w0 “ ´1, Fig. 2.3 showcases the background solutions, for which
we can notice ρm, the total (pressureless) matter content becomes negative in the future
at a „ 1.8. This should be expected, since the dark matter largely dominated the matter
content of the Universe. Alternatively, Fig. 2.4 displays the DM/DE ratio for this model
for the cases ξ “ ´γ “ ´0.2 and ξ “ ´γ “ 0.2 and as can be seen, negative values of
ξ (positive values of γq alleviate the coincidence problem in a similar fashion as it was
discussed for Q “ 3Hξρc.

2.2.3 Q “ 3Hpξcρx ` ξxρcq

Another form of linear dependence with the energy densities is Q “ 3Hξpρc ` ρxq,
studied in [85, 97, 117]. This model constitutes a generalization of the two previous cases
discussed. The differential equations for the background can be written as the following:

9ρx ` 3Hp1 ` wx ` ξxqρx “ ´3Hξcρc, (2.39)

9ρc ` 3Hp1 ´ ξcqρc “ 3Hξxρx. (2.40)

This case does not have simple analytical solutions (these can be found in [97]). There-
fore, instead of directly discussing the dynamics and the complexity of the solutions for
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Figure 2.2: WEC violation curves for ρx in Q “ 3Hξρx. The scale factor is presented
in the y axis in terms of ξ, for two values of w0: w0 “ ´0.8 (solid line) and w0 “ ´1.2
(dashed line). The value Ωx,0 “ 0.7 was used in order to make the plot. ξ ă 0 leads to
future ρc ă 0 in the future, while ξ ą 0 leads to ρc ă 0 in the past. From Ref. [116].

Figure 2.3: Background solutions for Q “ 3Hξρx in terms of the scale factor (solid lines)
and for ΛCDM (dashed). The values chosen for the parameters were w0 “ ´1, Ω0,x “ 0.7
and ξ “ ´0.1. The figures show the Hubble parameter Hpzq{H0 (left), the dark energy
density ρx (center) and the total matter content ρm (right). The dotted line in the left
panel, and the solid line at ρm “ 0 in the right panel are only for visual guidance. Taken
from Ref. [116]

DM/DE ratio, we’ll focus on highlighting some interesting constrains imposed on the pa-
rameters pξc, ξxq by the weak energy condition. Following the discussion in [97], we define
the following parameter:

α̃i “ ´ξi{w0, (2.41)

for i “ c, x. Imposing that the dark matter and dark energy must be positive at all times,
i.e., for the asymptotic solutions in the past and present leads to the conclusion that ξc

and ξx must have the same sign, in the case if they are both non-zero. Furthermore, we
have that

pα̃x ´ α̃cq
2

ď 2pα̃x ` α̃cq ´ 1. (2.42)

Which determines that the acceptable values for pα̃c, α̃xq must be below the parabola
defined in Eq. 2.42, which can be visualized in Fig. 2.5. Applying further conditions,
e.g., the fact that ρx is relevant only at later times, and ρc is less significant at late
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Figure 2.4: Evolution of the ratio r for Q “ 3Hξρx for different ξ. Here, γ is equivalent
to ´ξ. Thus, in blue we have ξ “ ´0.2, and ξ “ `0.2 in red. The black line (ξ “ 0)
is the case for null interaction, ΛCDM. The curves indicate how a small variation can
already change the evolution of r. As stated, this model softens the coincidence problem
for ξ “ ´0.2. From Ref. [29]

times (displayed by the colored lines in the image), severely restricts the possibilities for
parameter values to the region limited by the black lines.

Figure 2.5: Allowed values of (ξc, ξx) for Q “ 3Hpξcρc ` ξxρxq for the necessary conditions
established in Ref. [97]. Here, α̃i “ ´ξi{w0, with i “ c, x, as per the original paper. R is
the DM/DE ratio1. Ri “ 0.1 (cyan), R0 “ 3.4 (blue) and Rinf,m “ 10 (green) represent
constrains for the dark energy to not be relevant at early times and dark matter to have
little contribution at late times. See [97] for more details. The yellow curve indicates the
case for α̃c “ α̃x. The final region that obeys the aforementioned conditions is limited by
the black lines of the parallelogram.

Likewise, the special case ξc “ ξx “ ξ has also been investigated in the literature
(see [85, 117, 118] and references therein). This particular scenario offers an attractor
solution with constant DM/DE ratio [118], which could solve the coincidence problem if
this ratio reaches in accordance to r0 from observational data. As previously mentioned,
this form of solutions for r constitute a road to solving the coincidence problem, since
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they naturally offer a constant ratio at late times without having to rely on circumstantial
arguments to explain why we observe Ωc{Ωx „ 1 today. The evolution of the dark
matter/dark energy ratio is presented on the left panel of Fig. 2.6 for the case w0 “ ´1.1

for 3ξ “ 0.0001, 0.01, 0.1. As we can see, this model remarkably alleviates the CP, not
only when compared to ΛCDM, but also in comparison to Q “ 3Hξρc (right panel),
reaching lower values of ρc{ρx at earlier times, and driving r close to unity at late times.
Nevertheless, Fig. 2.7 pictures the constituents of the Universe at background level for
w0 “ ´1.1 for ξ “ 0.1 (left) and ξ “ 0.01 (right). In the case that ξ “ 0.1, we notice that
the Universe undergoes a period of baryonic matter domination around p1 ` zq „ 10´3

and p1 ` zq „ 10´2. We consider this case to be unrealistic, as a baryon dominated
epoch would directly affect the structure formation of our Universe, and although we
expect some differences in the history and evolution of the Universe in a coupled scenario,
the case for ξ “ 0.1 would overall be inconsistent with current data, specially matter
distribution probes like the ones mentioned in the previous chapter. In general terms,
although this model could in theory provide a satisfactory answer for the coincidence
problem, this would be the case for higher values of ξ, which ultimately poses an obstacle
for this particular model.

Figure 2.6: DM/DE evolution for the kernels Q “ Hξpρc ` ρxq (Q “ 3Hξpρc ` ρxq)
(a) and Q “ Hξ1ρc (Q “ 3Hξρc) (b), taken from [85]. In this work, rather than a
cosmological constant interacting with CDM, we have that w0 “ ´1.1. Notice that our
ξ is actually 3 times smaller the one in this image, 3ξ Ñ ξ (and 3ξ Ñ ξ1 for figure (b))
for this reference, but qualitative results are the same. Once again we have ΛCDM in
black, while ξ “ 0.001, 0.01, 0.1 is represented in blue, green and red, respectively. In
either situation, the ratio evolves differently than in ΛCDM, even for smaller values of ξ.
In particular, for Q “ 3Hξρc (Q “ Hξρc), the coincidence problem can be alleviated. In
comparison, Q “ Hξpρc ` ρxq (Q “ 3Hξpρc ` ρxq) the ratio varies less and even reaches
values of r close to 1 naturally at late times for ξ “ 0.1
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Figure 2.7: Energy density parameter for Q “ Hξpρc ` ρxq (or Q “ 3Hξpρc ` ρxq), with
w0 “ ´1.1, for ξ “ 0.1 (a) and ξ “ 0.01 (b). Taken from Ref. [85]. As we can see, distinct
values of the interaction parameter will change the history of the Universe, such as the
time for equality between components. For ξ “ 0.1, the Universe is dominated by baryons
between p1`zq „ 10´3 and p1`zq „ 10´2, which is unrealistic according to current data.

2.2.4 Q “ 3pΓcρc ` Γxρxq

Lastly, let’s explore another set of interaction kernels, in the form Q “ 3pΓcρc `Γxρxq,
where Γc,Γx are constant decay rates [85, 86, 95, 96]. This class of models is present in
the physics of curvaton fields [119], dark matter decaying into radiation [120, 121] and also
reheating models [98]. In practice, it could be seen as a generalization of the previous case,
Q9Hpξcρc ` ξxρxq, where instead of the Hubble rate, a global property of the Universe,
we have a more generic form Γ, which could be a local decay rate. The conservation
equations are no longer simplified as in the previous cases due to the dependency of H,
and we have

9ρc ` 3ρcpH ´ Γcq “ 3Γxρx, (2.43)

9ρx ` 3ρxp1 ` w0 ` Γxq “ ´3Γcρc, (2.44)

with w0 constant. The asymptotic solutions can be found in a simpler manner through
auxiliary variables (see [97]). The DM/DE ratio at late times becomes:

r “ ´
Γc

Γx

. (2.45)

Given that r must be positive as to obey the WEC, Eq. 2.45 requires Γc,Γx to have
opposite signs: (i) Γc ě 0 and Γx ď 0 or (ii) Γc ď 0 and Γx ě 0. On the other hand,
a careful analysis of the stability points in [97] states that it is not possible to find non-
vanishing values for both Γi (i “ c, x) so that the energy densities remains positive at
all times. Therefore, the case Γc “ Γx is automatically discarded. In the particular case



38 CHAPTER 2. INTERACTIONS IN THE DARK SECTOR

Q “ 3Γcρc, equivalent to Γx “ 0, the solution for ρc is simply:

ρc “ ρc,0a
´3expr3Γcpt ´ t0qs, (2.46)

and is always positive regardless of Γc. Instabilities for ρx, however, appear on ρx at
earlier times, such as the radiation dominated period [107]2, for which is valid:

3aΓc
ρc
ρx

“ p3w0 ` 2qτ´1, (2.47)

for wx ă ´2{3. As the right side of Eq. 2.47 is positive, one finds that Γc ą 0 in
order to have ρx ą 0. A positive value of Γc corresponds to dark energy forming dark
matter. Furthermore, Eq. 2.46 with Γc ą 0 translates to a fluid that becomes relevant
with time, so a low interaction rate is expected in order for this model to be consistent
with observational data. The top panel of figure 2.8 showcases two different cases for the
evolution of ρx: first, for a fixed Γc{H0 “ 5e ´ 7 and varying w0; for a fixed w0 “ ´0.87,
now varying Γc{H0. In both cases it is evident that ρx is well behaved at background level.
Nevertheless, large-scale curvature perturbation grow rapidly in the radiation dominated
period, causing troublesome instabilities (bottom panel of Fig. 2.8). This behavior appears
regardless of w0, although it can be attenuated for higher values of w0. As argued in [97],
this occurs due to the limitation of assuming w0 to be a constant.

Alternatively, if Q “ 3Γxρx, we have find the exact solution for ρx to be

ρx “ ρx,0a
´3p1`w0qexpr´3Γxpt ´ t0qs. (2.48)

In this case, it is clear that ρx is positive for either Γx ą 0 or Γc ă 0. At later times,
however, complications arise for a positive Γx, as it would lead to a Universe in which the
dark energy becomes negligible in the future and dark matter would once again be the
dominating energetic component. This hypothetical scenario violates thermodynamics.

Overall, this model can only be applied to certain eras of the Universe, depending on
the specific choices of Γc and Γx.

2.3 Tests for IDE

From an observational perspective, various forms of phenomenological interactions
have been investigated throughout the years, including the ones discussed in the previous
section. In general, probes such as SNIa, BAO and CMB are crucial for accurately
analyzing these models, as these types of dataset are able to extract significant information
of dark energy, while providing the best constrains either alone or in a joint analysis. They

2Reference [107] defines opposite signs for Γc and Γx in their conservation equations.
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Figure 2.8: Evolution of ρx (top panels) and the gauge-invariant curvature perturbation ζ
for k “ 7e´5 Mpc(bottom panels) for the interaction kernel Q “ Γcρc (Q “ 3Γcρc), taken
from Ref. [107]. The left panel displays different curves for a fixed Γc{H0 “ 5e ´ 7 (our
Γc and the Γ on the paper have opposite signs) and different EoS: w0 “ ´0.80,´0.87 and
w0 “ ´0.94. The right panel shows w0 “ ´0.87 fixed, and Γc{H0 “ 1e ´ 1, 5e ´ 3, 5e ´ 7.
The radiation-matter equality is represented as a dashed vertical line. Vertical lines in
black, dashed and in gray correspond to |3Hp1 ` w0qρx| “ |aΓcρc| for each matching
parameter. In the right panel, for w0 “ ´0.80, this condition is met in the past and
cannot be visualized in the image.

are also specially interesting if one also intends to explore the H0 tension (or, in the case
of other datasets, e.g., weak lensing for σ8 tension).

In this context, the model Q “ 3Hξρx has gained a substantial amount of attention
over the years [23, 29, 88–91, 112, 116, 122, 123]. In particular, Ref. [89] finds that H0 “

72.8`3.0
´1.5 km{s{Mpc at 1 C.L., and a non-vanishing interaction at about 3 C.L., for ξ ă 0

and w0 “ ´0.999 using PlanckTTTEEE`lowE [15] and H0 from Riess (R19) [124]. The
σ8 tension is also reduced. This trend is maintained, though less significantly, even when
including SNIa [125] and BAO measurements, or considering the lensing corrections for
CMB. Similar qualitative results are found when considering a free w0 in the quintessence
limit (w0 ą ´1), while in the case for a phantom dark energy, there is no preference for
an interaction. Refs. [91, 122] also reports these results, with [122] taking into account
Ωk as a free parameter. More recently, results published by the DESI team corroborated
these findings, with H0 “ 70.0 ˘ 0.59 km{s{Mpc and ξ “ ´0.191 ˘ 0.068 at 1 C.L. for
a combined analysis using Planck (temperature, polarization and lensing)` DESI BAO
(galaxies, quasars and Lyα) ` SNIa and cosmic chronometers data [90]. On the other
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hand, as pointed out in Ref. [116], ξ ă 0 is troublesome as it violates the weak energy
condition in the future (a ą 1). Furthermore, imposing a WEC prior on ξ qualitatively
changes the results. No evidence favoring interaction is found when applying a WEC prior,
i.e., requiring ξ ą 0 for Planck`Pantheon in [116], this analysis gives H0 “ 67.35`0.01

´0.02,
recovering the usual value for ΛCDM.

Other works, including [29, 110, 112] place constrains on Q “ 3Hξρc. Ref. [112]
presents the results including perturbations in the Hubble rate. The constrains for
PlanckTTTEEE`lensing in combination with various BAO measurements, the latest
SNIa catalog Pantheon`, RSD and H0 provide a vanishing interaction at 1 C.L., and
found no substantial difference for H0 when compared to ΛCDM. In [29], the model was
discarded for BAO and CMB temperature data. Previous works, such as [110], reports the
results for this kernel with a time-dependent equation of state, wx “ w0 `w1z, indicating
that this coupling favors smaller values of Ωc. Additional kernels, including non-linear
combinations of ρc, ρx, have also been analyzed, and we refer the reader to [29, 115]. Inter-
acting models can be further extended to include the sum of neutrino masses, as in [102].
This work results suggest a non-vanishing coupling scenario for Q “ Hξρx above 3 C.L.
when utilizing Planck`BAO`SNIa (JLA). More precisely, they find ξ “ ´0.064`0.110

´0.083 for
this dataset combination for an interacting vacuum and neutrinos, and ξ “ 0.087 ˘ 0.068

for an interacting vacuum and sterile neutrinos. Interacting models can also be studied
in the context of primordial black holes as in [92]. H0 and σ8 tensions were evaluated as
well, but no remarkable result was found.

Aside from parameter estimations, tests with observational data are present in the
literature, such as non-parametric reconstructions [126], Ompzq diagnostics [127], and
statefinder parameters [128]. N-body simulations have examined these scenarios as
well [129, 130]. Finally, while the current data is unable to provide strong evidence
favoring or disfavoring most of the coupled models proposed, we should expect future
experiments to provide powerful constrains on interacting models in the era of precision
cosmology. In particular, Ref. [106] forecasts the constrains of scattering in the dark
sector for Stage-IV experiments such as Euclid, while predictions in [126] indicate that
next-generation LSS surveys such as Euclid and SKA will be able to discriminate inter-
acting models with 4% uncertainty at z « 1.



Chapter 3

Dark degeneracy

3.1 A degeneracy in the dark sector

As previously stated, the set of equations that defines how gravity responds to the
presence of the constituents of the Universe is the Einstein’s field equations. When ex-
cluding the possibility of baryons and radiation interacting with dark matter and dark
energy, i.e., the dark sector, one may rewrite Eq. 1.15 as

T d
µν “

Gµν

κ
´

n
ÿ

i“1

T i
µν , (3.1)

with i “ r, b for radiation and baryons, respectively. T
pdq
µν is the total energy-momentum

tensor for the dark sector:
T d
µν “ T c

µν ` T x
µν , (3.2)

with c the (cold) dark matter and x the dark energy constituents as usual. Their actual
form, however, is undetermined by equation 3.2. In other words, since the composition
of this constituent is arbitrary, there is an infinite number of possibilities that we could
subdivide the dark sector. This fact poses the following problem: for a given T d

µν , how
can one infer the physical properties of the dark sector constituents, or rather, determine
the cosmological model that accurately describes the Universe? In general, we can’t. As a
result, models that posses the same net contribution for the energy-momentum tensor of
the dark sector, T d

µν , will be degenerated, constituting the so-called dark degeneracy [24–
29]. To illustrate our point, let’s take a look at Eq. 1.21. In Chapter 1, we learned that
the background evolution of the Universe is dependent on the total energy density ρ:

H2
paq “

8πG

3
ρ. (3.3)

The above equation is valid for the case of a flat FRLW metric, i.e., Ωk “ 0. However,
Ωk is a cosmological quantity that can be directly probed via observations such as weak

41
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lensing and BAO data [131, 132]. Thus, without loss of generality, we can center our
discussion around a flat metric, simplifying our equations. Therefore, from Eq. 3.3, as
long as the (total) resulting contribution of the energy density is the same, the expansion
rate of the Universe, i.e., Hubble rate, will be the same. As an example, suppose we have
two different splits of the dark sector:

ρd “ ρc ` ρx “ ρ1
c ` ρ1

x, (3.4)

with ρc ‰ ρ1
c, ρx ‰ ρ1

x
1. As we have assumed baryons and radiation to be ρr 9 a´4, ρb 9 a´3

regardless of the cosmological description, it is evident from Eq. 3.4, the Hubble rate will
be the same for either (ρc, ρx) or (ρ1

c, ρ
1
x):

H2
paq “

8Gπ

3
pρr ` ρb ` ρc ` ρxq,

“
8Gπ

3
pρr ` ρb ` ρ1

c ` ρ1
xq.

(3.5)

A direct consequence of this is in the distance measurements:

dLpzq “
1

p1 ` zq2

ż z1

0

dz

Hpzq
, dA “

dL
p1 ` zq2

. (3.6)

Clearly, this is applicable not only for the luminosity distances but to all distance measure-
ments, including SNIa, BAO and cosmic chronometers. As a matter of fact, cosmological
models with the same total value of energy momentum tensor for the dark sector will
not be distinguished by any data that depends solely on 9Hpzq, which will be evident
further in this chapter. This degeneracy is unavoidable at background level, but it can
be overcome at perturbative scales, as we shall discuss in Sec. 3.2.2. If we consider a
Universe containing only matter and dark energy, a valid approximation for low z, the
dark degeneracy can also be expressed in the following way in terms of wpzq [26]:

wpzq “
Hpzq2 ´ 2

3
HpzqH 1pzqp1 ` zq

H2
0Ωm,0p1 ` zq3 ´ Hpzq2

, (3.7)

which demonstrates how wpzq cannot be determined unless we provide the value of Ωm,0 in
advance. This can be visualized in Fig. 3.1. In general, the dark degeneracy doesn’t have
to be limited to the context of ΛCDM. As long as we specify a cosmological model, it is
always possible to find a degenerated family of cosmologies with a different cosmological
description. A degeneracy of similar fashion can be found in the context of modified
gravity theories [133–136], although constraints from gravitational waves are capable of
eliminating it [137].

As argued before, observations place Ωm,0 » 0.3 for ΛCDM, and we should expect
1Here, the prime simply denotes a different value of ρ, not a derivative in respect to the proper time.
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Figure 3.1: Dark degeneracy using background data from SNIa (SNLSS) [138] and BAO
(SDSS BAO) measurements [44]. Taken from Ref. [26]. Here, the degeneracy is repre-
sented though Ωm,0 (ΩM in the figure) and λ, where wpzq “ ´1{p1´λp1`zq3q. The filled
areas in yellow and red indicate 1σ and 2σ confidence levels, respectively. Notice that this
degeneration implies that unless we know Ωm,0 beforehand, we are unable to determine
the value of λ. Consequently, a single form of wpzq cannot be found as well.

to find small deviations from this result for other cosmological models, given the overall
success of the standard cosmological scenario. Either way, a single value of Ωm,0 cannot be
directly determined by astronomical observations alone, and with the era of precision cos-
mology, small differences between models become more relevant. For models degenerated
though the dark degeneracy, although the background evolution is the same, parameters
associated with the individual components of the dark sector differ: just as ρc ‰ ρ1

c,
ρx ‰ ρ1

x, we’ll find that Ωc,0 ‰ Ω1
c,0, Ωx,0 ‰ Ω1

x,0 (or equivalently wpzq ‰ wpzq1 for the
latter). Naturally, this is expected. Despite the fact that degenerated models could be
said to “mirror” each other in some ways, their cosmological description is fundamentally
distinct.

In this context, even if we find (Ωc,0,Ωx,0) for a given model, how could we identify that
we are indeed observing this specific model, instead of the properties of its degenerated
counterpart that manifest through the dark degeneracy? Likewise, assuming a form of
wpzq could also lead to incorrect interpretations of the cosmological model.

At its core, the dark degeneracy occurs due to our lack of knowledge of the dark sector
of the Universe. It is an intrinsic consequence of the indirect measurements of the dark
components, as observations provide constraints on dark matter plus dark energy based
on gravitational interactions from the dark sector rather than the individual constituents.
For that reason, the degeneracy is independent of the quality of our data. Even though
we are able to conclude some of its properties through observational aspects, we cannot
uniquely determine the physical nature of the individual constituents, thus allowing for a
number of interpretations of the dark sector, such as the ones explored in Chapter 2.

It is important to emphasize that the existence of the dark degeneracy does not in-
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validate studies on constraining cosmological models, such as performing parameter es-
timation, because testing the viability of several cosmological scenarios contributes on
narrowing down the possibilities of the physical description of the dark sector as well.
Nevertheless, investigating the dark degeneracy is relevant to improve our understanding
of the components of the Universe.

The dark degeneracy can be explored in the following sense: (i) by understanding
its impact on the information that can be extracted from cosmological data and (ii)
studying possibilities of breaking the degeneracy, by either combining with background
data that is not dependent on Hpzq or providing external information on the dark matter
component of the Universe. Some of these aspects have been studied in the literature
from different perspectives. In particular, [24] demonstrates through analytical and
numerical calculations that a unique solution for the scalar field potential V pϕq from
observations alone is unattainable. References [25, 139] construct a similar argument
for wpzq for scalar fields. On the other hand, [26–28] have also discussed few of its
properties for a fluid description, while considering a vanishing sound speed for the total
dark fluid [27], and discussing interacting models degenerated with ΛCDM [28]. More
recently, [30] established a mapping from dynamical dark energy models degenerated with
interacting vacuum cosmologies. This mapping allows us to directly investigate features
of the dark degeneracy such as the ones mentioned above. Throughout this chapter we’ll
establish this degeneracy relations, and look into some particular cases that were studied
in Ref. [30].

3.1.1 Unified dark fluid

Before we properly introduce the aforementioned mapping, it is useful to rewrite the
dark sector in terms of the unified (dark) fluid. In this thesis, we have seen instances where
the dark sector is constituted with independent fluids: dark matter and dark energy. In
Chapter 2, we have also looked into the possibility of such components having energy
and/or momentum exchange. Whichever the case, i.e., interacting or non-interacting
scenarios, by assuming that interactions with baryons and radiation are nonexistent (or
insignificant), one can always express the dark sector as a unified fluid, ρd:

ρd “ ρc ` ρx. (3.8)

By considering the dark matter to be pressureless, that is, pc “ 0, we have that the
pressure of the fluid will be equal to the pressure of the dark energy component

pd “ px, (3.9)
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and the equation of state of this dark fluid will be given by the usual definition

wd “ pd{ρd, (3.10)

which can be rewritten as
wd “

wx

p1 ` rpaqq
, (3.11)

where rpaq “ ρc{ρx the DM/DE ratio, just as in the previous chapter. One advantage
of the dark fluid description is that this fluid is conserved regardless of the existence of
coupling between the components. The conservation equation for the fluid is the same as
in Eq. 1.18:

9ρd ` 3Hp1 ` wdqρd “ 0. (3.12)

The general solution for the energy density is

ρdpaq “
3H2

0

8πG
Ωd,0 exp

«

´ 3

ż

1 ` wdpa1q

a1
da1

ff

. (3.13)

And we can see it depends on the total dark sector Ωd,0 “
ρd

ρcrit
“

ρx
ρcrit

`
ρc

ρcrit
“ Ωc,0 `Ωx,0,

rather than the separate contributions of its components.

3.2 Mapping degenerated models

We adopt the mapping derived from Ref. [29], which assigns dynamical dark energy
models to interacting vacuum models. In each case, we consider the dark sector to be
described by a perfect fluid, one that is independent of baryons and radiation, and assume
dark matter as a pressureless constituent. Furthermore, for the dynamical approach,
the DE equation of state is defined by a time-varying function, wpaq, whereas in the
interacting approach the dark energy takes a vacuum EoS parameter, i.e., w0 “ ´1, but
it is coupled to the dark matter. In order to obtain a degenerated pair, we must specify
the dynamical dark energy cosmology considered. The mapping will yield a (degenerated)
interacting model whose form of Q (or rpaq,fprq) is determined thought wpaq of the
dynamical approach. This mapping is also a bijective function, i.e., just as we are able
to ascertain a coupled model from a time-varying dark energy, we can also determine a
dynamical model starting from an interactive model (see Chapter 4). Although we will
base the discussion of this thesis from this specific mapping, the general procedure to
establish such relations remains valid: for two given dark sector descriptions, one must
impose that the total energy-momentum tensor for the dark sector is equal on both cases.
Then, by specifying a model for one of the approaches, we are able to find its degenerated
correspondent.

From now on, we’ll adopt the following notation for the quantities related to each
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dark sector approach: quantities of the dynamic approach will be denoted with a bar
overline (´), while quantities related to the interacting approach will be denoted with a
tilde overline („). In the event that these quantities are the same in both approaches and
in the case for the quantities that belong exclusively to the interacting scenario, e.g., Q,
no superscript is used.

3.2.1 Degeneracy at background level

Let’s take a look at the background equations for each approach. For the dynamical
approach, we have pressureless CDM and and dark energy with time-varying EoS:

w̄x “ w̄xpaq, w̄c “ 0, (3.14)

ñ p̄x “ w̄xpaqρ̄x, p̄c “ 0. (3.15)

Since each constituent is conserved individually, the conservation equations are the same
as Eq. 1.18

$

&

%

9̄ρc ` 3Hρ̄c “ 0,

9̄ρx ` 3Hp1 ` w̄xqρ̄x “ 0.
(3.16)

Here, H has no tilde or bar since it is equal regardless of the approach. The equations for
the unified dark fluid provide the following relations

p̄d “ w̄xpaqρ̄x, (3.17)

ρ̄d “ ρ̄c ` ρ̄x, (3.18)

w̄d “
w̄xpaqρ̄x
pρ̄c ` ρ̄xq

. (3.19)

For the interacting approach, we consider scenarios where a cosmological constant
interacts with pressureless CDM. Thus, for the interacting case, we have

rwc “ 0, rwx “ ´1, (3.20)

ñ p̃c “ 0, p̃x “ ´ρ̃x. (3.21)

Likewise, the unified fluid equations become

p̃d “ ´ρ̃x, (3.22)

ρ̃d “ ρ̃c ` ρ̃x, (3.23)

rwd “ ´
ρ̃x

ρ̃c ` ρ̃x
, (3.24)
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and the conservation equations can be written as Eqs. 2.15, 2.16:
$

&

%

9̃ρc ` 3Hρ̃c “ Q,

9̃ρx “ ´Q.
(3.25)

Where Q is the interaction parameter, as described in Chapter 2, and is a function of
the energy densities of dark matter and dark energy: Q “ 3HRpρ̃c, ρ̃xq( see 2.1.1). Since
Q,R and fpr̃q are exclusive to the coupled approach, we omit the tilde notation for this
quantities. It is assumed that there is no momentum transfer the between the components,
only energy is exchanged. The direction of the energy flux is dark energy loosing energy
to form dark matter for Q ą 0 and vice-versa. By imposing the quantities that must be
the same in both approaches, one is able to find a mapping from one approach to the
other. At the background level, through our unified fluid description, this translates as
the fluid being the same for the interacting and dynamical case, as pointed out in Eq. 3.4:

ρ̄d “ ρ̃d, (3.26)

p̄d “ p̃d, (3.27)

Combining equations 3.26 and 3.27, we also find that

w̄d “ w̃d. (3.28)

From the above relations we obtain

w̄xpaqρ̄x “ w̃xρ̃x, (3.29)

ñ w̄xpaqρ̄x “ ´ρ̃x, (3.30)

and
ρ̄c ` ρ̄x “ ρ̃c ` ρ̃x. (3.31)

Assume that for a given dark energy parameterization, we want to find the interacting
correspondent degenerated model. In this case, we rewrite the equations in the following
form

ρ̃x “ ´w̄xρ̄x, (3.32)

ρ̃c “ ρ̄c ` ρ̄xp1 ` w̄xq. (3.33)

and for the density parameters

Ω̃c,0 “ Ω̄c,0 ` Ω̄x,0p1 ` w̄xq. (3.34)
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Now we have the cosmological parameters of the interacting model („) in terms of the
component of the dynamical approach (´). Thus, Eqs. 3.32 and 3.33 constitute the map-
ping of degenerated models for the background. Equivalently, the condition in Eq. 3.28
can also be expressed in terms of the DM/DE ratio, which will be convenient when dis-
cussing the behavior of the models in Section 3.3. The general solution for the DM/DE
ratio of the dynamical approach:

r̄paq “ r̄0a
´3 exp

„

3

ż

1 ` w̄xpa1q

a1
da1

ȷ

. (3.35)

Using Eq. 3.11 and Eq. 3.28 the expression for r̃paq becomes

r̃paq “
w̄xpaq

1 ` r̄0a´3 exp

„

3
ş 1`w̄xpa1q

a1 da1

ȷ ´ 1. (3.36)

We stress that Eq. 3.28 is valid not only for this case of interacting vacuum/dynamical
DE but for any two approaches that can be viewed as a unified fluid. That is to say that
we are free to choose w̃xpaq (or w̃dpaq, for a broader case). For the interaction parameter
Q, even though we need an ansatz, the exact function will only be determined through
the mapping.

3.2.2 Degeneracy at perturbative linear level

As in the previous chapters, our discussion of the cosmological perturbations will be
based on the linear regime for the first order. The degeneracy on perturbed scales follows
the same procedure as the background: we impose that the total energy-momentum
tensor for the dark sector is identical for the two approaches. We analyze the case for the
cosmically relevant perturbations, i.e., scalar and tensor modes, separately.

• Scalar perturbations

In the Newtonian gauge, for any dark sector approach, the Einstein field equations
are described by Eqs. 1.37-1.40. Forcing the left side of this set of equations to be
equal will result in the following relations:

´k2Φ̄ ` 3Hp´Φ̄q “ ´k2Φ̃ ` 3Hp´Φ̃q, (3.37)

k2
p´Φ̄1

` HpΨ̄q “ k2
p´Φ̃1

` HpΨ̃q, (3.38)

´ 3Φ̄2
` 3HpΨ̄1

´ 2Φ̄1
q ` 3

´

2
a2

a
´ H2

¯

Ψ̄ ´ k2
pΦ̄ ` Ψ̄q

“ ´3Φ̃2
` 3HpΨ̃1

´ 2Φ̃1
q ` 3

´

2
a2

a
´ H2

¯

Ψ̃ ´ k2
pΦ̃ ` Ψ̃q,

(3.39)
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´k2
pΦ̄ ` Ψ̄q “ ´k2

pΦ̃ ` Ψ̃q. (3.40)

Where on the left side we have the dynamical approach, and the right side constitutes
the coupled approach. The conditions established by Eqs. 3.37-3.40 require the
gauge-invariant potentials to be identical in both scenarios:

Ψ̄ “ Ψ̃; Φ̄ “ Φ̃. (3.41)

The degenerated mapping now connects
␣

δρ̄c, δρ̄x, δp̄c, δp̄x, θ̄c, θ̄x, σ̄c, σ̄x

(

Ñ
!

δρ̃c, δρ̃x, δp̃c, δp̃x, θ̃c, θ̃x, σ̃c, σ̃x

)

. However, we assume CDM to be a pressureless
component, which implies δρ̄c “ δρ̃c “ σ̄c “ σ̃c “ 0. On the other hand, from the
right side of the Einstein’s equations in the Newtonian gauge, we find the relations
for the dark degeneracy for scalar perturbations as follow [30]:

δρ̄c ` δρ̄x “ δρ̃c ` δρ̃x, (3.42)

ρ̄cθ̄c ` ρ̄xp1 ` w̄xqθ̄x “ ρ̃cθ̃c, (3.43)

δρ̄x “ δρ̃x, (3.44)

ρ̄xp1 ` w̄xqσ̄x “ 0. (3.45)

Where we have used w̃x “ ´1. Notice how all the equations must be valid in order to
obey Eq. 3.41. We’ll discuss each of them individually. First, Eq. 3.42 reproduces
the conservation equation for the interacting approach. This can be verified by
combining Eq. 3.42 with the conservation equation from the dynamical approach
(Eqs. 1.46, 1.47, 1.48 1.49), and using the relations from the background degeneracy.
Furthermore, Equations 3.43 and 3.45 lack the velocity of the DE fluid, θ̃x, as well
as the anisotropic stress σ̃x for the interactive model, which suggests that these
quantities are not relevant for the degeneracy at scalar perturbations and can be set
to zero. In fact, Eq. 3.45 only holds true for σ̄x “ 0 at all times. Lastly, one can find
that Eq. 3.44 is equivalent to the momentum conservation for the cold dark matter
of the interactive model, by applying the same strategy used for Eq. 3.42. Overall,
one can argue that the relations described in Eqs. 3.42-3.45 are, in a way, redundant.
In fact, they do not contain new physics that would be interesting to investigate.
Moreover, as mentioned, we must force ω̄x “ 0 in order for the degeneracy to be
satisfied at all times. Bearing this in mind, we can choose to avoid the conditions
established by the degeneracy at perturbative level with certain parameter choices.
From now on, we’ll opt to do this by fixing the sound speed for the DE frame to
unity: c̄2s,x “ c̃2s,x “ 1. This can be visualized rewriting the perturbed conservation
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equations in terms of the comoving sound speed [30]:

δ1
i ` 3Hpc2s,i ´ wiqδi ` p1 ` wiqpθi ` 3Φ1

q

` 3H
”

3Hp1 ` wiqpc2s,i ´ wiq ` w1
i

ı θi
k2

“
aQi

ρi

”

Ψ ´ δi ` 3Hpc2s,i ´ wiq
θi
k2

`
δQi

Qi

ı

,

(3.46)

and

θ1
i ` Hp1 ´ 3c2s,iqθi ´

c2s,i
1 ` wi

k2δi ` k2σi ´ k2Ψ “
aQ

ρip1 ` wiq

”

θ ´ p1 ` c2s,iqθi ´
k2Fi

Qi

ı

.

(3.47)
With

δi ”
δρi
ρi

, (3.48)

c2s,i ”
δp

pcomq

i

δρ
pcomq

i

. (3.49)

• Tensor perturbations

We repeat the same process for the tensor perturbations (Eq. 1.50) and find that

16πGa2Π̄ij “ 16πGa2Π̃ij, (3.50)

thus Π̄ij “ Π̃ij. However, since we are dealing with perfect fluids, the value of
the anisotropic stress is already set to zero, which implies that the degeneracy for
this type of perturbation leads to a trivial equation, i.e., there are no physical
consequences for the degeneracy in this case.

3.3 Special cases of dark energy parameterization de-

generated models

In this section we’ll review the theoretical predictions and statistical analysis of the
cases analyzed in Ref. [30], based on three wpaq parameterizations mentioned for the dark
energy: wCDM, Chavelier-Polarski-Linder (CPL) and Barboza-Alcaniz (BA). With the
purpose of studying the differences between degenerated pairs at smaller scales, the DE
comoving sound speed is set to unity on both scenarios (c̄s,x “ c̃s,x “ 1), hence avoiding
the degeneracy at perturbative level. In order to obtain the curves for the models, the
software CLASS [39] was employed, where the cosmological quantities for the dynamical
scenarios were fixed as follow:

H0 “ 70 km{s{Mpc, w̄0 “ ´0.9, w̄a “ ´0.1, Ω̄c,0 “ 0.25, , (3.51)
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while Ω̃c,0 “ 0.32, as per Eq. 3.34. The baryon energy density was set to Ωb,0 “ 0.05,
regardless of the approach.

3.3.1 wCDM

The first case to be considered is the simplest parameterization for the equation of
state. This is an interesting model to further discuss few specifics of the dark degeneracy.
For the wCDM, w̄xpaq “ w̄0, where w̄0 is a constant with w̄0 ă ´1{3. The solutions for
the energy densities of the dark sector in the dynamical approach, hereafter w̄CDM, are
(from Eq. 1.18):

$

&

%

ρ̄c “
3H2

0

8πG
Ω̄c,0a

´3,

ρ̄x “
3H2

0

8πG
Ω̄x,0a

´3p1`w̄0q.
(3.52)

Thus, from Eqs. 3.32 and 3.33, the equivalent solutions for the interacting scenario,
rwCDM, become:

ρ̃c “
3H2

0

8πG
rΩ̄c,0 ` Ω̄x,0p1 ` w̄0qa´3w̄0sa3, (3.53)

ρ̃x “ ´
3H2

0

8πG
Ω̄x,0w̄0a

´3p1`w̄0q. (3.54)

We notice that ρ̃x will be positive, since w̄0 ă 0. Now is an appropriate moment to
highlight the distinction between w̄0 and w̃0. On the right side side of Eq. 3.29, we have
that w̃xρ̃x “ w̃0ρ̃x “ ´ρ̃x as per our choice for the interacting fluid. On the left side, for
w̄CDM, we have w̄0ρ̄x. Therefore, although w̃x is fixed to w̃0 “ ´1, w̄0 ‰ w̃0, as long as
ρ̄x ‰ ρ̃x. In point of fact, the only instance where w̄0 “ w̃0 is for w̄0 “ ´1, for which
both interacting and dynamical models are reduced to ΛCDM (Eqs. 3.52 - 3.54). In other
words, the w̄0 parameter can be associated to the interaction, in the sense that the more
w̄0 deviates from ´1, the stronger the coupling in the interactive scenario. As w̄0 is the
only EoS related parameter to appear in both approaches, we’ll chose to drop the bar
notation for this quantity for the sake of simplicity, while keeping in mind that the closer
w0 is to ´1, the similar the models are. The exact relation between the interaction and
w̄0 is given by fpr̃q:

fpr̃q “ ´1 ´
r̄0w0a

3w0

1 ` w0 ` r̄0a3w0
. (3.55)

With r̄paq:
r̄paq “ r̄0a

3w0 , (3.56)

and r̃paq:

r̃paq “ ´1 ´
1 ` r̄0a

3w0

w0

. (3.57)

From Eq. 3.55, it is evident that fpr̃q will be zero for w0 “ ´1, equivalent to a non-existing
interaction. Furthermore, fpr̃q is associated to the interaction parameter Q through



52 CHAPTER 3. DARK DEGENERACY

Equation 2.19

fpr̃q “
Q

3H

´ ρ̃c ` ρ̃x
ρ̃c ρ̃x

¯

, (3.58)

thus, if we assume that the interacting model obeys the weak energy condition, the term
´

ρ̃c`ρ̃x
ρ̃c ρ̃x

¯

will always be positive, and fpr̃q and Q will have the same signs (since H ą 0

at all times). Moreover, we can rewrite fpr̃q from Eq. 3.55 as fpr̃q “ ´p1 ` Xq, with
X “ ´ r̄0w0a3w0

1`w0`r̄0a3w0
, so that for p1`Xq ă 0, fpr̃q ą 0, Q ą 0 and the flux of the interaction

will be from DEÑ DM, whereas if p1 ` Xq ą 0, results in an energy flux from DMÑDE.

Bellow, we present the background and perturbative quantities at linear regime for the
(w̄CDM, w̃CDM) pair. The left panel of Figure 3.2 illustrates the evolution of matter,
radiation and dark energy for each model in terms of the cosmological redshift z. The
panel on the top evidences that the evolution of Ωi, with i “ c, x is identical for the
degenerated models for z ď 10, while the radiation component remains unaffected by the
interaction considered, as anticipated. The difference between the approaches only gets
significant at later times, reaching around 20% (bottom panel), when dark energy plays
a bigger role in the evolution of the background, something already anticipated for the
w̄CDM model. The ratio Ω̄x{Ω̃x is simply ´1{w0, given the relation in Eq. 3.32. Since w̄x

is a constant, this ratio is stagnant as well. Nevertheless, if we were to extract the Ωi,0

from Hpzq data, we would not be able to correctly identify which model we are observing:
if we assume we are observing w̄CDM, the data will provide Ω̄c,0 “ 0.25. Otherwise, if the
cosmology of the Universe is accurately described by w̃CDM, then the correct value for
the density parameter will be Ω̃c,0. The right side of Figure 3.2 presents the interaction
function, fpr̃q. A change in behavior for fpr̃q happens around z » 10, where the second
term in Eq. 3.55 becomes relevant. The line at fpr̃q “ 0 corresponds to null interaction,
for which the model reduces to ΛCDM, the same for r̄pzq{r̃pzq “ 1.

Even when the models are no longer bounded by the dark degeneracy, they are almost
identical at the time for last scattering, z „ 1100, therefore, we should expect these simi-
larities to be reflected on the perturbative scales of the CMB power spectra as well. This
can be visualized in Figure 3.3. More specifically, on the right panel, we can verify that
the location of the peaks and the amplitude of the first peak coincide for the cosmological
models in both temperature and polarization lensed power spectra. Differences between
the models are displayed at C̄TT

ℓ {C̃TT
ℓ , C̄EE

ℓ {C̃EE
ℓ . At low ℓ, they arise due to integrated

Sachs-Wolfe (ISW), however, since this region corresponds to great areas of the sky, the
cosmic variance comes into play and therefore we do not expect CMB data constraints
to give us information about the cosmological model. On the other side of the spectrum,
the lensing effects gain more significance and may be able to differentiate the models,
considering that the CMB power spectrum is measured with great precision for the high
multipole range. Likewise, the differences for the gauge-invariant potentials Ψ and Φ at
k “ 0.1 h/Mpc are manifested at late-times, in similar way to Fig. 3.2. We remind the
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reader that by our construction for circumventing the degeneracy at linear level, Ψ and
Φ are not equal. As for the lensing potential power spectrum is dependent on the cos-
mic history for each model, therefore, divergences between the approaches are foreseen,
although they are minimal (subplot in the top right corner of Fig. 3.3).

Finally, the curves related to the matter at perturbative regime are displayed in Fig-
ure 3.4. On the right side, the density contrast for the baryons (dotted lines) behave
equally for both models, since this constituent evolves independently whichever the sce-
nario. The models departure for the CDM (solid lines) occurs at late-times, this once
again can be attributed to the fact that the interaction is pronounced after the DE is the
dominant component. On the right panel, the total matter power spectrum is presented
for z “ 0. The quantities fixed as Equation 3.51 lead to a σ̄8 “ 0.83 and σ̃8 “ 0.70 for the
w̄CDM and w̃CDM, respectively. One can observe the qualitative similarities for P pkq

of both approaches. Considering that the sound speed for the DE component is fixed to
c2s,x “ 1 for w̄CDM, w̃CDM, the DE is not able to cluster inside the horizon, and does
not contributes with the matter power spectrum. Therefore, the difference in amplitude
for P pkq in Figure 3.4 originates from the difference in values for Ω̄c,0, Ω̃c,0.

Figure 3.2: Background quantities for w̄CDM (in red) and rwCDM (in blue). The cosmo-
logical parameters were set following Eq. 3.51. Top left: Evolution of Ωipzq, i “ r, c, x
represented in dashed, point and dash, and solid lines, respectively. Differences between
the approaches become apparent only around z “ 10, where DE is the dominant energy
component. Radiation follows its usual 9 a´4, since it’s not included in the interaction for
the dark fluid. Bottom left: Ratio of the dynamical and interacting density parameters.
Top right: Interaction function fpr̃q (f̃pr̃q in the figure), the function decreases as the
second term in Eq. 3.55 gains significance. A dashed line at zero represents the case for
null interaction. Bottom right: ratio between r̄pzq, from the dynamical model and r̃pzq

from the w̃CDM. The dotted line at r̄pzq{r̃pzq “ 1 represents the case where this models
coincide, ΛCDM.
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Figure 3.3: Quantities related to CMB power spectra for the w̄CDM (in red) and rwCDM
(in blue). Top left: lensed CMB power spectrum for temperature auto-correlation. Bot-
tom left: lensed CMB power spectrum for polarization auto-correlation. Top right:
gauge-invariant potentials Φ,Ψ at k “ 0.1h/Mpc. Since we chose to avoid the degeneracy
for perturbative linear level, these potentials are not identical in both approaches. . Bot-
tom right: lensing potential power spectrum.

Figure 3.4: Behavior at perturbative scales for matter quantities in wCDM parameter-
ization. Quantities for the dynamical model are represented in red (w̄CDM), while the
interacting model ( rwCDM) is in blue. The cosmological parameters were set following
Eq. 3.51. Left: density contrast for baryons (dotted lines) and CDM (solid lines) for
k “ 0.1 h/Mpc. Right: Total matter power spectrum for z “ 0.
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3.3.2 Chavelier-Polarski-Linder (CPL)

The second pair of degenerated models comes from the parameterization Chavelier-
Polarski-Linder (CPL) [73, 74], briefly mentioned in Chapter 1. The CPL contains two
parameters for the equation of state: w0 and wa, where the latter is associated to a
time-dependent term:

wxpaq “ w0 ` wap1 ´ aq. (3.59)

Therefore, as a Ñ 1, i.e., today, wxpaq Ñ w0. Following the same procedure for the first
example of degenerated models, we find the relations for ĆCPL from CPL. The solutions
for the dynamical approach become:

$

&

%

ρ̄c “
3H2

0

8πG
Ω̄c,0a

´3,

ρ̄x “
3H2

0

8πG
Ω̄x,0a

´3p1`w0`waq expr3wapa ´ 1qs.
(3.60)

Which leads to the following equations for the interacting counterpart:

ρ̃c “
3H2

0

8πG

!

Ω̄c,0 ` Ω̄x,0r1 ` w0 ` wap1 ´ aqs expr´3wap1 ´ aqsa´3pw0`waq
)

a´3, (3.61)

ρ̃x “ ´
3H2

0

8πG
Ω̄x,0rw0 ` wap1 ´ aqs expr´3wap1 ´ aqsa´3p1`w0`waq. (3.62)

And the equation for the dark matter/dark energy ratio

r̄paq “ r̄0 expr3wap1 ´ aqsa3pw0`waq, (3.63)

r̃paq “ ´
1 ` w0 ` wap1 ´ aq ` r̄0 expr3wap1 ´ aqsa3pw0`waq

w0 ` wap1 ´ aq
, (3.64)

for the CPL and ĆCPL, respectively. fpr̃q becomes

fpr̃q “
3w0p1 ` w0q ` war3 ` 6w0 ´ 2ap1 ` 3w0qs ` 3w2

ap1 ´ aq2

3rw0 ` wap1 ´ aq

"

r̄0a3pw0`waq ` r1 ` w0 ` wap1 ´ aqs expr´3wap1 ´ aqs

ˆ

"

r̄0a
3pw0`waq

` expr´3wap1 ´ aqs

*

.

(3.65)

Now, the condition for which the coupled pair is identical to ΛCDM happens for
w0 “ ´1; wa “ 0. The relation that connects w0, wa to the interaction parameter is
Eq. 3.65. Likewise, the closer pw0; waq is to p´1; 0q, the weakest the interaction for this
model. The images for the same quantities as in Sec. 3.3.1 are presented bellow.

Figure 3.5 shows the background evolution for CPL and ĆCPL. In contrast to the
former case, now Ω̄x{Ω̃x evolves with time, which can be visualized in the bottom panel
on the left. On the top right, the evolution for fpr̃q starts off almost identical to ΛCDM,
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and rapidly reaches around ´0.4 at z ď 10. Equivalently, the ratio r̄pzq{r̃pzq begins near
unity, where the models are equal to pw0 “ ´1; wa “ 0q but decreases to bellow 0.8,
reaching the fixed values established in Equation 3.51. Furthermore, we can observe from
Eq. 3.65 that fpr̃q can have a sign change for certain combinations of pw0; waq, implying
that this coupled model, ĆCPL, allows for a switch in energy flux, an aspect that was
absent in w̃CDM. Figs. 3.6 and 3.7 exhibit the differences for CMB and quantities related
to the matter power spectrum, where σ̄8 “ 0.83 for CPL and σ̃8 “ 0.70 for ĆCPL. We
arrive to similar conclusions to the (w̄CDM, w̃CDM) pair, except the fact that the models
are in close proximity of w0 “ ´1 at the time of the last scattering, the differences in the
CMB are even more imperceptible as opposed to the previous example.

Figure 3.5: Background quantities for CPL (in red) and ĆCPL (in blue). The cosmological
parameters were set following Eq. 3.51. Top left: Evolution of Ωipzq, i “ r, c, x
represented in dashed, point and dash, and solid lines, respectively. Differences between
the approaches become apparent only around z “ 10, where DE is the dominant energy
component. Radiation follows its usual 9 a´4, since it’s not included in the interaction for
the dark fluid. Bottom left: Ratio of the dynamical and interacting density parameters.
Top right: Interaction function fpr̃q (f̃pr̃q in the figure), the function decreases as DE
gains significance. A dashed line at zero represents the case for null interaction. Bottom
right: ratio between r̄pzq, from the dynamical model and r̃pzq from the ĆCPL. The dotted
line at r̄pzq{r̃pzq “ 1 represents the case where this models coincide, ΛCDM.

3.3.3 Barboza-Alcaniz (BA)

The last dark energy parameterization we’ll be discussing is the Barboza-Alcaniz. This
parameterization was first proposed in Ref. [72], as a dynamical dark energy that avoids
divergence at a Ñ 8. For this case, the equation of state evolves as the following:

wxpaq “ w0 ` wa
p1 ´ aq

1 ` 2apa ´ 1q
. (3.66)



3.3. SPECIAL CASES OF DEGENERATED MODELS 57

Figure 3.6: Quantities related to CMB power spectra for the CPL (in red) and ĆCPL (in
blue). Top left: lensed CMB power spectrum for temperature auto-correlation. Bottom
left: lensed CMB power spectrum for polarization auto-correlation. Top right: gauge-
invariant potentials Φ,Ψ at k “ 0.1h/Mpc. Since we chose to avoid the degeneracy for
perturbative linear level, these potentials are not identical in both approaches. . Bottom
right: lensing potential power spectrum.

Hence, the dynamical solutions for Barboza-Alcaniz are given by:

$

’

’

&

’

’

%

ρ̄c “
3H2

0

8πG
Ω̄c,0a

´3,

ρ̄x “
3H2

0

8πG
Ω̄x,0a

´3p1`w0q

«

1 `

´

1´a
a

¯2

ff3wa{2

,
(3.67)

while the relations for the interacting approach for the BA parameterization take a more
complex form in comparison with the previous examples:

ρ̃c “
3H2

0

8πG

#

Ω̄c,0 ` Ω̄x,0a
´3w0

„

1`w0 `wa
p1 ´ aq

1 ` 2apa ´ 1q

ȷ„

1`

´1 ´ a

a

¯2
ȷ3wa{2

+

a´3, (3.68)

ρ̃x “ ´
3H2

0

8πG
Ω̄x,0a

´3p1`w0q

„

w0 ` wa
p1 ´ 2aq

1 ` 2apa ´ 1q

ȷ„

1 `

ˆ

1 ´ a

a

˙2ȷ3wa{2

. (3.69)

r̄paq “ r̄0a
3w0

„

1 `

ˆ

1 ´ a

a

˙2ȷ´3wa{2

, (3.70)
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Figure 3.7: Behavior at perturbative scales for matter quantities in CPL parameteri-
zation. Quantities for the dynamical model are represented in red (CPL), while the
interacting model (ĆCPL) is in blue. The cosmological parameters were set following
Eq. 3.51. Left: density contrast for baryons (dotted lines) and CDM (solid lines) for
k “ 0.1 h/Mpc. Right: Total matter power spectrum for z “ 0.

r̃paq “ ´

1 ` w0 ` wa
p1´aq

1`2apa´1q
` r̄0a

3w0

„

1 `
`

1´a
a

˘2

ȷ´3wa{2

w0 ` wa
p1´aq

1`2apa´1q

. (3.71)

Finally, the interaction function for the ĂBA is:

fpr̃q “ ´ 1 `

"

war1 ` 2apa ´ 2qs

ˆ

2 ´
2

a
`

1

a2

˙3wa{2

a1´3w0 ` r̄0

„

´ 3

ˆ

w0 ` 2w0apa ´ 1q

˙2

´ 6w0wa ` waa

ˆ

1 ` 18w0 ` 2apa ´ 2qp1 ` 6w0q

˙

´ 3w2
apa ´ 1q

2

ȷ*

"

3rw0 ` 2w0apa ´ 1q ` wap1 ´ aqs

„ˆ

1 ` 2apa ´ 1q

˙

r̄0

`

ˆ

1 ` w0 ` 2apa ´ 1qp1 ` w0q ` wap1 ´ aq

˙ˆ

2 ´
2

a
`

1

a2

˙3wa{2

a´3w0

ȷ*´1

.

(3.72)

We present the plots of cosmological interest for these models bellow. We notice
that for this occasion, fpr̃q undergoes a change in signal for the chosen values of pw0 “

´0.9; wa “ ´0.1q. This is pictured in Figure 3.8. More specifically, we observe fpr̃q » 0,
i.e., near ΛCDM, for the early Universe. At z ď 10, fpr̃q ě 0, but decreases to negative
values not long after. The ratio Ω̄x{Ω̃x now evolves more abruptly, which can be visualized
in the bottom left panel. This implies that there is a period where Ω̃x ą Ω̄x, but Ω̃x later
reaches lower values than Ω̄x.

The quantities associated to the CMB follow an analogous behavior as the ones for
wCDM and CPL (Fig. 3.9). In particular, for the BA pair, we notice that the lensing
potencial power spectrum (bottom right) is essentially indistinguishable between the two
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scenarios. Therefore, we do not expect CMB related data to contribute with signifi-
cant information in differentiating these models, given that they are almost identical to
ΛCDM at high redshift. Finally, Figure 3.10 displays the density contrast δi for matter
constituents, and the total matter power spectrum P pkq at z “ 0. In this case, σ̄8 “ 0.84

for BA and σ̃8 “ 0.70 for ĂBA. We find no qualitatively distinction in comparison with
the previous examples.

Figure 3.8: Background quantities for BA (in red) and ĂBA (in blue). The cosmological
parameters were set following Eq. 3.51. Top left: Evolution of Ωipzq, i “ r, c, x
represented in dashed, point and dash, and solid lines, respectively. Differences between
the approaches become apparent only around z “ 10, where DE is the dominant energy
component. Radiation follows its usual 9 a´4, since it’s not included in the interaction for
the dark fluid. Bottom left: Ratio of the dynamical and interacting density parameters.
Top right: Interaction function fpr̃q (f̃pr̃q in the figure), the function decreases as DE
gains significance. A dashed line at zero represents the case for null interaction. Bottom
right: ratio between r̄pzq, from the dynamical model and r̃pzq from the ĂBA. The dotted
line at r̄pzq{r̃pzq “ 1 represents the case where this models coincide, ΛCDM. Taken from
Ref. [30].
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Figure 3.9: Quantities related to CMB power spectra for the BA (in red) and ĂBA (in
blue). Top left: lensed CMB power spectrum for temperature auto-correlation. Bottom
left: lensed CMB power spectrum for polarization auto-correlation. Top right: gauge-
invariant potentials Φ,Ψ at k “ 0.1h/Mpc. Since we chose to avoid the degeneracy for
perturbative linear level, these potentials are not identical in both approaches. . Bottom
right: lensing potential power spectrum. Taken from Ref. [30].

3.3.4 Statistical Analysis

We present the results of the statistical analysis conducted in Ref. [30] using the partic-
ular cases addressed in Sec. 3.3. The results are split into two categories: background only
and background ` CMB data. This partition was made with the aim of separating the
instance where the models are degenerated in contrast to the perturbative level, when in-
cluding CMB. The datasets used for the background analysis were Pantheon (SN Ia) [125];
a compilation of 30 data points from cosmic chronometers (CC), from Ref. [140]; BAO
measurements from 6dF [141] and BOSS DR12 [142]. The CMB measurements employed
in this work come from Planck 2018 (TT,TE,EE,low E and lensing) [15]. In order to per-
form the Monte Carlo analysis, the programs CLASS [39], to compute the physics, and
the software Monte Python [143], to perform the parameter estimation, were employed.
For the background analysis, the set of free parameters were tΩc,0, H0, w0, wau whereas
for the CMB the standard base of Planck parameters, tωb, ωc, H0, τreio, ln 10

10Asu was
utilized. Additionally, for the latter, σ8 was included as a derived parameter.

As we argued, we anticipate that Hpzq based observations provide the same results
for both approximations, saved for Ωc,0. The findings of this analysis are reported in
Table 3.1, where the ΛCDM was included for the sake of comparison. From this table, it
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Figure 3.10: Behavior at perturbative scales for matter quantities in BA parameter-
ization. Quantities for the dynamical model are represented in red (BA), while the
interacting model (ĂBA) is in blue. The cosmological parameters were set following
Eq. 3.51. Left: density contrast for baryons (dotted lines) and CDM (solid lines) for
k “ 0.1 h/Mpc. Right: Total matter power spectrum for z “ 0. Taken from Ref. [30].

is possible to verify that Ω̃c,0 “ Ω̄c,0 ` Ω̄x,0p1` w̄xq holds true for all interacting cases. An
image with the posterior distribution from Tab. 3.1 for Ωc,0 is shown in Fig. 3.11. Fur-
thermore, since w0, wa for the coupled models are parameters related to the interaction,
one can presume that their errors will be carried out to the Ωc, 0 and overall parameters
affiliated to the CDM energy density. This widening of the error bars can be observed in
Table 3.1, and is illustrated in Fig. 3.11 for the background data. Likewise, the depen-
dence of CDM with (w0, wa) for the interactive scenario also implies that a correlation
between quantities of CDM and the aforementioned EoS parameters is to expected. This
correlation can be observed in the plots for the contours of the background statistical
analysis, in Figures 3.12, 3.13 and 3.14.

Alternatively, when combining the background probes, SN Ia and BAO, with CMB,
the degeneracy is broken. Even though the models are no longer degenerated, given our
parameterization choices for perturbative scales, the differences in the CMB spectrum
are not sufficient to distinguish the approaches from CMB data constrains. On the other
hand, CMB measurements provide tight constrains for cosmological models, and will serve
the purpose of studying the peculiarities of the interacting models. Table 3.2 summarizes
the results for this dataset combination. The full table can be found in Table 2 of Ref. [30].
Figures 3.15, 3.16, 3.17 displays the contour plots for Ωc,0 ´ σ8, at 1σ and 2σ confidence
level using CMB ` SN Ia ` BAO data. The error propagation originated by a dependency
on (w0, wa) for the coupled models gains relevancy for this dataset combination. For all
3 cases studied, the constrains for the interactive approach are considerably larger than
the 2σ region covered by their respective dynamical counterparts, which occurs due to
error propagation from parameters such as w0 on other cosmological quantities. Moreover,
Fig. 3.18 presents a color coding plot for (w0, wa) correlation for the CPL and BA pairs.
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We can notice that w0 and wa are visibly correlated to Ωc,0 for ĆCPL and ĂBA, whereas for
CPL and BA, no traces of correlation are observed.

Model Ωc,0 H0 w0 wa

ΛCDM 0.303`0.013
´0.012 69.3`1.3

´1.4 ´ ´

w̄CDM 0.303`0.013
´0.013 68.8`1.7

´1.8 ´0.999`0.045
´0.046 ´

w̃CDM 0.303`0.034
´0.029 69.0`1.8

´1.7 ´0.998`0.046
´0.042 ´

CPL 0.298`0.014
´0.016 68.8`1.8

´1.6 ´1.043`0.072
´0.100 0.39`0.69

´0.30

ĆCPL 0.261`0.053
´0.086 68.8`1.7

´1.7 ´1.055`0.069
´0.110 0.38`0.74

´0.25

BA 0.298`0.014
´0.015 68.6`1.8

´1.8 ´1.057`0.079
´0.088 0.32`0.36

´0.27

ĂBA 0.256`0.063
´0.071 68.7`1.8

´1.8 ´1.058`0.079
´0.088 0.32`0.38

´0.27

Table 3.1: Best-fit values and 1σ confidence level from statistical analysis for degenerated
models with SN Ia, BAO and CC measurements. ΛCDM was included for comparison
purposes. From Ref. [30].

Figure 3.11: Posterior distribution of Ωc,0 (Ωc0 in the picture). The dynamical models
are presented in red, while the interacting models are in blue. Left: wCDM. Center:
CPL. Right: BA. From Ref. [30].
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Parameter ΛCDM w̄CDM w̃CDM CPL ĆCPL BA ĂBA
10´2ωb 2.243`0.014

´0.013 2.238`0.015
´0.015 2.239`0.014

´0.015 2.236`0.013
´0.014 2.235`0.013

´0.015 2.225`0.015
´0.015 2.228`0.015

´0.016

ωc 0.1193`0.00094
´0.00091 0.1198`0.0011

´0.0011 0.1126`0.0120
´0.0090 0.1201`0.0011

´0.0012 0.1208`0.0250
´0.0240 0.1194`0.0013

´0.0014 0.1175`0.0215
´0.0210

H0 67.71`0.42
´0.42 68.39`0.78

´0.81 68.17`0.83
´0.90 68.32`0.78

´0.85 68.17`0.86
´0.83 68.15`0.84

´0.83 68.08`0.79
´0.80

w0 ´ ´1.031`0.034
´0.029 ´1.021`0.035

´0.032 ´0.963`0.081
´0.076 ´0.997`0.077

´0.076 ´0.987`0.071
´0.071 ´1.004`0.066

´0.065

wa ´ ´ ´ ´0.27`0.30
´0.27 ´0.12`0.34

´0.26 ´0.08`0.16
´0.15 ´0.03`0.15

´0.14

σ8 0.8106`0.0060
´0.0063 0.8197`0.0110

´0.0120 0.8571`0.051
´0.079 0.822`0.011

´0.012 0.832`0.095
´0.170 0.823`0.012

´0.012 0.848`0.084
´0.153

Table 3.2: Best-fit values and 1σ confidence level from statistical analysis for degenerated
models with CMB ` SN Ia ` BAO measurements. ΛCDM was included for comparison
purposes. Adapted from Ref. [30].

Figure 3.12: Countour plots for the wCDM pair with background data. The dynamical
model (w̄CDM) is shown in red and the coupled approach (w̃CDM) is in blue. The filled
regions indicate 1σ (inner region) and 2σ (outer region) confidence levels. From Ref. [30].
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Figure 3.13: Countour plots for the CPL pair with background data. The dynamical
model (CPL) is shown in red and the coupled approach (ĆCPL) is in blue. The filled
regions indicate 1σ (inner region) and 2σ (outer region) confidence levels. From Ref. [30].
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Figure 3.14: Countour plots for the BA pair with background data. The dynamical model
(BA) is shown in red and the coupled approach ( ĂBA) is in blue. The filled regions indicate
1σ (inner region) and 2σ (outer region) confidence levels. From Ref. [30].
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Figure 3.15: Ωc,0 ´ σ8 plane from the statistical analysis using CMB ` SN Ia ` BAO
data for the wCDM parameterization. The dynamical approach, w̄CDM, is represented
in blue, while the interacting model, w̃CDM is in red. The filled regions indicate 1σ (inner
region) and 2σ (outer region) confidence levels. Adapted from Ref. [30].

Figure 3.16: Ωc,0 ´ σ8 plane from the statistical analysis using CMB ` SN Ia ` BAO
data for the Chavelier-Polarski-Linder (CPL) parameterization. The dynamical approach,
CPL, is represented in blue, while the interacting model, ĆCPL is in red. The filled regions
indicate 1σ (inner region) and 2σ (outer region) confidence levels. Adapted from Ref. [30].
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Figure 3.17: Ωc,0 ´σ8 plane from the statistical analysis using CMB ` SN Ia ` BAO data
for the Barboza-Alcaniz parameterization. The dynamical approach, BA, is represented
in blue, while the interacting model, ĂBA is in red. The filled regions indicate 1σ (inner
region) and 2σ (outer region) confidence levels. Adapted from Ref. [30].

Figure 3.18: Color coded contour plot analysis with CMB ` SN Ia ` BAO data. Top
left: CPL. Top right: ĆCPL. Bottom left: BA. Bottom right: ĂBA. Figure from
Ref. [30].
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Chapter 4

One-parameter dynamical dark energy
model from the generalized Chaplygin
gas

4.1 The non-adiabatic generalized Chaplygin gas (gCg)

4.2 Introduction

In this chapter, we’ll focus on the inverse method as presented in Chapter 3 and
Ref. [30]. That is, we seek to obtain the degenerated dynamical model from a given
interaction. We study the particular case of a one-parameter dark energy from the well-
known generalized Chaplygin gas (gCg) [144–149]. This chapter is organized in the
following manner: In Section 4.3 we once more describe the background framework of the
dark degeneracy, but now establishing the relations from the interacting approach to the
(non-interacting) dynamical DE approach. Section 4.4 applies the obtained equations for
the gCg model, which results in the background and perturbative descriptions. Lastly,
Section 4.5 presents the observational data used in our analysis as well as the main
constrains on the dynamical model parameters. The results of the analyses reported in
this Chapter were published in Ref. [31].

4.3 Dark degeneracy

4.3.1 Mapping from interacting to dynamical approach

As aforementioned, the dark degeneracy enables us to determine a mapping from one
scenario to the other. In Chapter 3, we considered two approaches in order to construct
a mapping: (i) a dynamical non-interacting dark sector, whose EoS is w̄xpaq; (ii) an

69
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interacting dark sector in which a cosmological constant (w̃x “ ´1) is coupled to the
(pressureless) dark matter. Likewise, we’ll adopt these cosmological scenarios in order to
obtain our relations for the interacting Ñ dynamical mapping. The procedure to establish
the relations for this case is identical to that presented in Sec. 3.2 in Eq. 3.14 to 3.31.
The distinction lies in the quantities we aim to derive. While in Ch. 3 our goal was
to find (ρ̃c, ρ̃x) in terms of (ρ̄c, ρ̄x), here, we are interested in determining (ρ̄c, ρ̄x) from
(ρ̃c, ρ̃x), which is known for a given interaction. As previously discussed, the function of
this coupling can be specified by either fpr̃q, Q or Rpρ̃c, ρ̃xq. In that sense, Eqs. 3.32
and 3.33 can be rearranged to obtain

ρ̄x “ ρ̃c ´ ρ̄c ` ρ̃x , (4.1)

w̄x “ ´
ρ̃x

ρ̃c ´ ρ̄c ` ρ̃x
. (4.2)

Now, the quantities to be determined are ρ̄x and w̄x, since CDM energy density evolves
with a´3 for the dynamical model. On the other hand, the general solution for r̃paq

r̃paq “ ´

1 ` r̄0a
´3 exp

”

3
ş 1`w̄xpa1q

a1 da1

ı

w̄xpaq
´ 1, (4.3)

is an integral equation, thus, there is one extra degree of freedom that must be fixed.
Here, we adopt the following condition

w̄x pa “ 1q “ w̄0 . (4.4)

Notice how, in contrast to the dynamical to interacting mapping, w̄xpaq is the quantity
that must be fixed, instead of being determined for a particular model, such as w̄CDM,
CPL, BA. More specifically when choosing w̄xpaq, we are ultimately fixing an interaction
for our coupled model.

4.4 Decomposed generalized Chaplygin gas model

In this chapter, the designated interacting model was the generalized Chaplygin gas
(gCg). The gCg was inspired by the Chaplygin equation, a differential equation present
in aerodynamical studies. This gas has been applied cosmology as an attempt to unify
the dark sector [150–153] and is characterized by the following EoS [144, 145]

pch “ ´
A

ραch
, (4.5)

where the sub index “ch” designates quantities associated to the Chaplygin gas. Here, A
is a strictly positive constant and α is a constant free parameter that must satisfy the
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condition1 α ` 1 ą 0. The solution for the energy density is given by

ρch “

„

A `
B

a3p1`αq

ȷ
1

1`α

, (4.6)

where B is a constant of integration. Although cosmological models based on the gCg have
been widely studied in literature [146–149, 154], its adiabatic version presents instabilities
in the matter power spectrum, as argued in [155]. Alternatively, when non-adiabatic
perturbations are considered, the instabilities are removed [156–158], therefore making
them a viable alternative to the dark sector.

On this basis, a viable proposal to introduce non-adiabaticities to the gCg model
consists in diving it into interacting dark components, the so-called decomposed gen-
eralized Chaplygin gas [159, 160]. In this interacting scenario, the decomposed gCg
model has already undergone several observational tests [161–164]. We refer the reader
to Refs. [165, 166] for an updated analysis on the parameter selection for the decomposed
gCg with the most recent available data.

4.4.1 (Interacting) Decomposed gCg

For our interacting decomposition of the gCg, we consider that the energy density and
pressure of the gCg are divided into CDM and DE contributions:

ρch “ ρ̃c ` ρ̃x and pch “ p̃x . (4.7)

As in the previous chapter, we also impose that the DE component is described by a
vacuum EoS, i.e., w̃x paq “ p̃x{ρ̃x “ ´1, and the background energy conservation is given
by Eq. 3.25. As already developed in Refs. [159, 160], the decomposed gCg is related to
following source function

Q̃ “ 3H p1 ` w̃0q
ρ̃c ρ̃x

ρ̃c ` ρ̃x
, (4.8)

and the background energy densities are given by

ρ̃c “
8πG

3H2
0

Ω̃c0a
3w̃0

˜

Ω̃c0a
3w̃0 ` Ω̃x0

Ω̃c0 ` Ω̃x0

¸´1´ 1
w̃0

, (4.9)

ρ̃x “
8πG

3H2
0

Ω̃x0

˜

Ω̃c0a
3w̃0 ` Ω̃x0

Ω̃c0 ` Ω̃x0

¸´1´ 1
w̃0

. (4.10)

1In the original gCg model (e.g. see Ref. [144]), we have instead the range 0 ă α ď 1. We note,
however, that this particular range is motivated for a quartessence model where the gCg fluid acts as
dark matter or dark energy at different times. In this work, we consider a decomposed dark sector where
an interaction between its components is allowed. Instead, our choice for α ` 1 ą 0 is motivated by the
fact that, for our model, the gCg solution can also assume quintessence behavior.
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The Eqs. 4.9 and 4.10 fully determine the background dynamics of the Universe in the
interacting decomposed gCg scenario.

4.4.2 (Dynamical) Decomposed gCg

From now on, we will denominate the dynamical model obtained from the coupled
decomposed gCg the w̄gCg model. In practice, the w̄gCg can be understood as a different
decomposition of the gCg, where the dark components do not mutually interact and where
the dark energy component is dynamical.

In order to obtain the background solutions in the dynamical approach, we combine
Eqs. 4.1 and 4.2, where the CDM energy density in the dynamical approach is given by
the first expression Eq. 3.16, and the interacting solutions are given by Eqs. 4.9 and 4.10,
with the condition 4.4. This procedure leads us to the following solutions for the DE
energy density and DE EoS parameter:

ρ̄x “
8πG

3H2
0

a´3

»

–

´

Ω̃c0 ` Ω̃x0

¯
1
w̃0

`1 ´

Ω̃x0a
´3w̃0 ` Ω̃c0

¯´ 1
w̃0

´

w̃0

´

Ω̃c0 ` Ω̃x0

¯

` Ω̃x0

w̃0

fi

fl , (4.11)

w̄x “ ´
w̃0Ω̃x0pΩ̃c0 ` Ω̃x0q

1` 1
w̃0

pa3w̃0Ω̃c0 ` Ω̃x0q

´

w̃0pΩ̃c0 ` Ω̃x0q
1` 1

w̃0 ´ pΩ̃c0 ` a´3w̃0Ω̃x0q
1
w̃0 pΩ̃x0 ` w̃0pΩ̃c0 ` Ω̃x0qq

¯ .

(4.12)

The Eqs. 4.11 and 4.12 fully determine the background dynamics of the Universe in the
dynamical decomposed gCg scenario.

There are some important aspects of the dynamics of the w̄gCg model that can be
analyzed from those equations. First, from 4.12, we can conclude that, at z “ 0, the
DE EoS results in w̃0. This means that the today’s value of the DE EoS parameter
w̄x pz “ 0q “ w̄0 is identical to the interaction parameter w̃0. Thus, in a similar way with
what was argued for w̄0 in Section 3.3.1, from now on we also omit the bar/tilde in the
w0 parameter. Likewise, w̃0 also reflects the deviation from ΛCDM model, independently
of the approach. Second, Eqs. 4.11 and 4.12 are written in terms of the “interacting”
parameters (with tildes). In reality, this is a mathematical convenience because in the
dynamical scenario, only the “dynamical” parameters (with bars) have physical meaning.
For example, the density parameters for CDM and DE components in the dynamical
approach are given by

Ω̄c0 “
w0Ω̃c0 ` w0Ω̃x0 ` Ω̃x0

w0

and Ω̄x0 “
Ω̃x0

w0

. (4.13)

It is possible to verify that Eq. 4.12 only produces physical solutions for ´1 ă w0 ă 0,
and in all cases the EoS parameters is restricted to w0 ď w̄x pzq ď 0. In practice, this



4.4. DECOMPOSED GENERALIZED CHAPLYGIN GAS MODEL 73

implies that the w̄gCg model does not admit phantom dark energy solutions nor allows
the EoS parameter to cross w0 “ ´1. In this sense, the w̄gCg delivers an one-parameter
dynamical EoS for the DE component that naturally avoids the phantom regime.

In order to compute the background dynamics of the w̄gCg, we utilize a modified ver-
sion of the Boltzmann solver CLASS [39] with the equations developed in Sec. 4.4.2. The
background solutions for w̄gCg model considering some specific values for the parameter
w0 can be visualized in Figure 4.1. In the left panel, we show the time evolution of the
EoS parameter of the DE component, while in the right panel of Fig. 4.1 we present the
time evolution of the density parameter for all species. From this image, it is possible to
observe that the DE component has a pressureless phase in the early Universe (w̄x « 0),
shows a transient evolution to a negative EoS starting from z “ 10, and reaches the value
w̃0 today, as imposed by the condition 4.4. This pressureless phase creates a “step” in
the evolution of the DE component. As will be discussed later, this behavior plays a
role in our perturbative analysis. A remarkable feature of this model is that the matter
component never reaches unity (i.e., Ω̄m “ 1) in the interval z “ 1 and z “ 103. At
first glance, one could assume that there is no matter dominated epoch for this model.
However, during the aforementioned period, the DE is pressureless, therefore it behaves
like matter, making a late-time transition to a negative pressure fluid.
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Figure 4.1: Background solutions for the w̄gCg model for different values of w0. Both
plots consider Ω̃c0 “ 0.25, and the value of Ω̄c0 can be obtained from Eq. 4.13. Left
panel: EoS parameter in the dynamical approach for different values of w0. In each
case, the dark energy component behaves as matter in the early universe and transits to
a negative w̄x around z “ 10. Due to physical bounds, w̄x never reaches values below
´1. Right panel: Density parameter for all matter species. The radiation component
is denoted by the dashed-dotted line: the matter component, which contains CDM and
baryons, is denoted by the dashed line; and the DE component is denoted by the solid
line.
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4.4.3 Perturbations

As argued in Chapter 3, the dark degeneracy at perturbative scales can be evaded
for certain circumstances, and we’ll adopt analogous conditions for this chapter as well.
Nevertheless, in order to assess our model with the latest CMB data from Planck, we
need to compute the perturbative cosmology. The perturbative equations for this model
are described by equations 3.46, 3.47 (with Q “ 0), valid for a perturbed FRLW metric at
linear order and Newtonian gauge. Furthermore, for the (pressureless) CDM component,
we fix, as usual, wc “ 0 and c2s,c “ 0. On the other hand, for the DE component we
use Eq. 4.12 for the EoS parameter, and, motivated by the scalar field sound speed,
we set c2s,x “ 1, which avoids DE from clustering. We recall that our model is not
the conventional gCg, but the decomposed gCg model, therefore we are refrained from
considering the standard adiabatic sound speed c2gcg “ ´αwgCg for the DE component.

To evaluate the growth of perturbations in the w̄gCg, we calculate the temperature
anisotropies in the CMB and the matter power spectrum for different values of the param-
eters w0 and Ω̄c0. Fig. 4.2 presents the CMB power spectrum for our model for variations
in the Eos parameter w0 (left panel) and for different values for Ω̄c0 (right panel). In the
left panel, it is possible to observe that the model is very sensitive to w0 values, offering
changes in the format of the CMB power spectrum, mostly as the overall amplitude. In
general, it is well-known that the overall amplitude of the CMB power spectrum depends
on the time of the decoupling. Hence, since the parameter w0 affects the expansion dy-
namics of the Universe, i.e., it affects the Hubble rate, this strong dependency of the
CMB power spectrum in relation to w0 is expected. For changes in Ω̄c0, in addition to an
increase in the amplitude, we can see the that the peak scales are slightly shifted to the
left, which is compatible to a similar analysis in the context of the ΛCDM model.

Finally, the linear matter power spectrum for the w̄gCg can be visualized in Fig. 4.3.
Similarly to Fig. 4.2, the left panel showcases P pkq obtained for different w0, whereas the
right panel presents variations for Ω̄c0. As well as the CMB spectrum, we can notice from
the left panel that the matter power spectrum is particularly sensitive to the w0 parameter.
More specifically, the higher the value for w0, the greater the suppression suffered by the
matter power spectrum. In order to understand this behavior, we must remember that
despite the fact that the DE component acts like pressureless matter between 100 ă z ă

103, it also has luminal sound speed (c2s,x “ 1) at linear level, which prevents it from
clustering. Thus, the suppression in P pkq observed in Figure 4.3 occurs due to the fact
that only a portion of the cosmic substratum (i.e., the dark matter component) is capable
of clustering. In this sense, for the w̄gCg, one could interpret the parameter w0 as a
quantity that prevents part of the matter from clustering. In right panel of Fig. 4.3,
the effect of varying Ω̄c0 in the linear matter power spectrum can be visualized. In this
case, it is evident that the amplitude and the slope of the curve for large values of k



4.5. STATISTICAL ANALYSIS 75

1010
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

`(
`
+

1)
C
T
T

`
/2
π

 [µ
K

2
]

1000 1500
Multipole `

w0 = − 0.95

w0 = − 0.90

w0 = − 0.80

1010

1000

2000

3000

4000

5000

6000

7000

`(
`
+

1)
C
T
T

`
/2
π

 [µ
K

2
]

1000 1500
Multipole `

Ω̄c0 = 0.25

Ω̄c0 = 0.23

Ω̄c0 = 0.20

Figure 4.2: CMB temperature anisotropies power spectrum for the w̄gCg model. Left
panel: Results obtained with different values of w0, fixing Ω̃c0 “ 0.25 (the value of Ω̄c0

can be obtained from Eq. 4.13). Right panel: Results obtained with different values of
Ω̄c0, fixing w0 “ ´0.95.

are slightly affected. Both of these well-known aspects can be are related to the matter
density parameter: while the amplitude is associated to the DE density parameter, given
by Ω̄x0 « 1 ´ Ω̄c0 ´ Ω̄b0; the slope of power spectrum depends on the ratio Ω̄b0{Ω̄c0.

4.5 Statistical analysis

4.5.1 Cosmological data

The next step after analyzing the w̄gCg model from the theoretical perspective is to
validate it under observational constrains. In this context, combined with the Boltzmann
solver CLASS, we make use of the statistical code MontePython [167] in order to perform
a parameter selection with the recent data publicly available. In what follows we present
the data used in this analysis:

• SNe Ia: For the supernovae Ia (SNIa) data, we use the Pantheon compilation [125].
This sample contains 1048 measurements of the apparent magnitude m for SNIa in
the redshift range 0.01 ď z ď 2.3. In this analysis, the absolute magnitude is
considered as a nuisance parameter. The theoretical model enters in the luminosity
distance.

• BAO/RSD: For the Baryon Acoustic Oscilation and Redshift Space Distortion,
we consider the data from SDSS-DR7 Main Galaxy Sample [168], BOSS-DR12
(LRG) [169], eBOSS-DR16 (LRG, QSO and Lyα auto- and cross-correlation with
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Figure 4.3: Linear matter power spectrum for the w̄gCg model. Left panel: Results
obtained with different values of w0, fixing Ω̃c0 “ 0.25 (the value of Ω̄c0 can be obtained
from Eq. 4.13). Right panel: Results obtained with different values of Ω̄c0, fixing
w0 “ ´0.95.

QSO) [170]. All these data have been obtained from galaxy/quasar clustering, how-
ever, rather than considering the full power spectrum, we employ the compressed
information contained in: (i) the angular BAO feature from DM{rd; (ii) the BAO
radial feature from DH{rd; and the anisotropic features in galaxy clustering from
fσ8. For the BAO angular quantity, the characteristic distance is related to the
angular diameter distance (dA) as DM ” p1 ` zq dA, and in the radial quantity,
the characteristic distance is related to the Hubble rate via DH ” c{H. Moreover,
rd is the sound-horizon distance evaluated out to the baryon drag epoch, f is the
linear growth rate and σ8 is the amplitude of mass fluctuations on scales on scale
8h´1Mpc. Although we consider these datasets to be independent, a covariance
matrix is accounted for in different measurements inside each catalog. Additional
information about this data combination, including a table with the specific quan-
tities, measurements, mean redshifts and errors can be found in [171].

• CMB: In this analysis, we use the Planck 2018 data with information from temper-
ature, polarization and temperature polarization cross-correlation spectra (TT, EE,
TE), as well as the lensing maps reconstruction [15]. We considered the likelihood
codes as follow:(i) the COMANDER likelihood version for low-ℓ TT spectrum, which
contains data of the spectrum with 2 ď ℓ ă 30; (ii) the SimAll likelihood version
for low-ℓ EE spectrum in the same interval of ℓ; (iii) the Plick TTTEEE likelihood
version for the TT spectrum with 30 ď ℓ ă 2500 as well as the TE and EE spectra
with 30 ď ℓ ă 2000; and (iv) the standard likelihood obtained from the lensing
power spectrum reconstruction with 8 ď L ď 400. A detailed description of the
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likelihood codes can be found in Ref. [172].

• Weak Lensing: We utilize the weak lensing measurements from the KiDS-1000 [17,
173]. In this case, the relevant cosmological observable is the weak lensing power
spectrum ξ˘ pθq for the auto- and cross-correlations across four tomographic redshift
bins. Following the KiDS-1000 orientation, we make use of the COSEBIs (Complete
Orthogonal Sets of E/B-Integrals [174]) as our summary statistic, and we employ
the code HMCODE to perform our non-linear power spectrum calculations. Based
on the fact that the HMCODE is able to compute the non-linear power spectrum
for dynamical DE models [175], we assume that it provides the correct prediction
for our model.2

4.5.2 Results

We combine the contributions for the background data, i.e., SN Ia and BAO/RSD
in blue, while maintaining the CMB and weak lensing separated in order to study the
impact of each dataset on this model. The results from our statistical analyses can be
visualized in Figures 4.4 and 4.5, as well as Table 4.1. Aside from weak lensing, we find
that w0 is tightly constrained by the data. Notice that, since w̄xpzq ě ´1 for all z, our
parameter selection only provides an upper-bound for w0, with ´1 being the lower bound.
Furthermore, as we can see in Tab. 4.1, the constrains provided by SNIa`BAO and CMB
allow for deviations from ΛCDM less than 1%. Such strong constrains indicate that our
model affects considerably the CDM component at early times, which affects both the
CMB and BAO physics. The joint analysis is not shown because it is fully dominated
by the CMB data. We report that our results are in agreement with Ref. [176], where a
study for different cases of interacting models, including the gCg, is performed. Finally,
it is worth emphasizing that small deviations from ΛCDM are not sufficient to exclude
the model here explored [177].

In order to assess how the model responds to the current observational tensions of
the standard cosmology, we also compare the values obtained for H0 with the H0 value
obtained by [178], H0 “ 73.2 ˘ 1.3 km/s/Mpc. In what concerns the joint analysis
with CMB, we find that the tension remains almost identical, due to the weight of the
CMB data on the estimate of H0. On the other hand, regarding the S8 tension, when
we compare the results for the plane Ωm ´ S8 from Planck 2018 and KiDS-1000, we find
that our model delivers predictions compatible with higher values of S8 from weak lensing,
causing both analyses, from CMB and weak lensing, to agree at » 1σ confidence level. We
also notice that the uncertainties for S8 have increased in relation to the ΛCDM scenario.

2The HMCODE has already been validated with numerical simulations for the Chevallier-Polarski-
Linder (CPL) dynamical DE description [175]. We recognize the need of future N-body simulations that
take into account the specifics of our model in order to validate our results.
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Figure 4.4: Corner plot of Ω̄m, w0 and S8 for the statistical analysis for the w̄gCg model.
Each dataset is used in a different color: Weak lensing (green), SN Ia + BAO/RSD
(blue) and CMB (red). The inner and outer regions represent 1σ and 2σ CL, respectively.
We only find lower and upper limits for values of w0, for which we find that the best
constrains are offered by CMB and SN Ia + BAO/RSD, whereas weak lensing provides
weak constraining power. For S8, we find 1σ compatibility between datasets for w0 » ´1,
for which our model tends to ΛCDM.

This is expected, since the inclusion of a parameter for a model tends to propagate its
uncertainties to the derived parameters, such as S8. On the other hand, Fig. 4.4 shows
that the wgCg can reach high values of S8 compatible with weak lensing measurements,
but only in the case w0 ą ´1. However, CMB data constrains w0 to be very close to ´1,
and brings back S8 to its usual ΛCDM value. In other words, the S8 tension could be
resolved only at the expense of introducing a new w0 tension.
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w̄gCg

w0 Ω̄m H0 S8

SN Ia + BAO/RSD ă ´0.992 0.315 ˘ 0.011 70.5`1.4
´1.8 -

Weak Lensing ă ´0.902 0.282`0.071
´0.090 72.9 ˘ 5.0 0.828`0.042

´0.073

CMB ă ´0.997 0.320`0.008
´0.010 66.90`0.72

´0.60 0.833 ˘ 0.013

Table 4.1: Best fit and 1σ confidence level obtained for each sample used. Current
constrains for our model only offer upper limits for w0, which is also evident in Fig. 4.4.
Aside from weak lensing we find tight constrains for the other parameters. We also find
that the CMB data shows preference for higher values of H0 when in comparison to ΛCDM
scenario. As mentioned in Fig. 4.4, compatibility in 1σ between datasets is reached when
our model tends to ΛCDM.

60 70 80
H0

R21 SN Ia + BAO
Weak lensing
CMB

0.1 0.2 0.3 0.4 0.5
Ω̄m

0.75

0.80

0.85

0.90

0.95

S
8

Weak Lensing
CMB

Figure 4.5: H0 and S8 distributions for w̄CDM model. Left panel: H0 posteriors for
each dataset is presented in a different color: SN Ia + BAO/RSD (blue), weak lensing
(green), CMB (red) for 1σ. The grey region represents the bounds for the value found
in Ref. [178]. As seen in Tab. 4.1, the CMB possesses the highest constraining power for
H0, followed by SN Ia + BAO/RSD, while weak lensing provides the worst constraining
power for the same parameter. Right panel: S8 ´ Ω̄m plane obtained from weak lensing
and CMB analysis. Once again, the inner and outer regions represent 1σ and 2σ CL.
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Chapter 5

Assessing the dark degeneracy through
gas mass fraction data

5.1 Introduction

In this chapter, we make use of the gas mass fraction from galaxy clusters, fgaspzq,
to perform a test for breaking this degeneracy at the background level. As mentioned in
Section 1.2.1, this dataset provides measurements on Ωc{Ωm rather then Hpzq only, thus,
it could in theory be able to distinguish the values of cosmological parameter on both
approaches. We perform a statistical analysis for the degenerated pair (wCDM,w̃CDM)
described in Section 3.3.1. The analysis is split for using fgaspzq alone, and its combination
with SNIa, BAO and CMB. Furthermore, we obtain a model-independent Ωc,0 estimate
from the reconstruction of ρcpzq using fgas in order to determine which approach is favored
by the gas mass fraction data. We describe the observational data and the methodology
applied for our statistical analyses in Sec 5.2. In Sec. 5.3, we report and discuss our main
findings. The results reported in Sec. 5.3 of this chapter were published in Ref. [32].

5.2 Methodology

5.2.1 Observational data

We use datasets of complementary observational samples with the purpose of dis-
cussing a possible breaking of dark energy at background level. For the SN Ia, BAO and
CMB, the cosmological data employed in this work is similar to the ones utilized in the
analyses performed in Chapter 4. More specifically, we employ the Pantheon catalog [125]
for the supernovae data; the BAO/RSD data compilation described in Sec. 4.5.1; as well
as the Planck 2018 data for the lensed temperature, polarization auto- and cross power
spectra, i.e., Planck 2018 TT,TE,EE`lensing.

Moreover, we utilize 40 measurements of gas mass fraction, fgaspzq, calculated in

81
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a spherical shell of 0.8 ă r{rref2500 ă 1.2 from the center of the cluster, obtained from
Mantz et al. [55] (hereafter M14). For this catalog, the fiducial cosmology assumed in the
observations is the flat ΛCDM with Ωm,0 “ 0.30 and H0 “ 70 km/s/Mpc.

5.2.2 Statistical Analysis

We use modified versions of the Boltzmann solver CLASS [39] to compute the
background evolution for our models and perform a Monte Carlo analysis with the
MontePython code [179]. A likelihood code for MontePython was created in order to
use the fgaspzq data from M14. Our algorithm does not perform the calibration between
X-ray data and weak lensing, but rather follows the simplified analysis reported in [57],
by using an external prior on K0 from the Weighting the Giants project (WtG) [53]. This
approach disconsiders a correlation between the cosmology used in the calibration and the
cluster related parameters, but as stated in [53], this dependency is weak. Additionally,
for the sake of simplicity, we chose not to include the intrinsic scatter at fgaspr2500q, which
is reportedly low („ 7%) [55], and the mass dependency M2500 of the gas mass fraction.

With the intention of evaluating the effect of adding gas mass fraction data to break the
degeneracy, we conduct three separate analyses for each model, separating the background
data from CMB: fgaspzq, fgaspzq ` SNIa ` BAO and fgaspzq ` CMB. The priors adopted
for each parameter in our fgaspzq analysis are presented in Table 5.1, while the external
priors used for 100ωb,0 and h are from Cooke et al.(2014) [180] and Riess 2021a [178],
hereafter R21. Finally, we used the program GetDist [143], to analyze the MCMC chains
generated by MontePython.

Parameter Prior

Cosmological
‹ 100ωb,0 N r2.202; 0.046s

‹ h N r0.732; 0.013s

Ωc,0 Ur0; 1s

w0 -

Astrophysical
‹ K0 N r0.96; 0.09s

K1 Ur´0.05; 0.05s

Υ0 Ur0.763; 0.932s

Υ1 Ur´0.05; 0.05s

‹ η N r0.442; 0.035s

Table 5.1: Priors used for statistical analysis with fgas. The Gaussian priors are rep-
resented with N [Mean; Standard deviation], while uniform priors are noted as U [Min;
Max]. We used a star symbol (‹) alongside the parameter name to indicate that the prior
was external. For the EoS parameter w0, for both the dynamical and interacting models,
we used a wide (uninformative) prior.
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5.3 Results

5.3.1 Gas mass fraction

Figure 5.1 presents our results for the statistical analysis and Table 5.2 for the gas
mass fraction. A full triangle plot, including the nuisance parameters can be visualized
in Figure 5.6. From Tab. 5.2, for fgaspzq, we find Ωc,0 does not vary considerably in both
models, however w0 is significantly different in w̄CDM to rwCDM, although both models
are in agreement with ΛCDM at 2σ confidence level. We obtain a phantom dark energy
at 1σ for w̄CDM, which is in agreement with previous results for this particular model
from this dataset [55, 57]. Additionally, when using gas mass fraction only, one can notice
that the error bars are smaller for the interacting model, rwCDM, than for the dynamical
case, w̄CDM. This result can be explained by the fact that in the dynamical model the
parameter w0 only appears inside Hpzq in dApzq and Apzq and therefore constraints on
this parameter are weak. In contrast, for rwCDM, w0 appears in the expressions for Ω̃c,
resulting in tighter constraints from fgas. Furthermore, we find w0 to be close to w0 “ ´1,
compatible with a weak interaction for this model. Likewise, in the same way that w0

is poorly constrained for w̄CDM by fgaspzq, H0 is also. Therefore, the analysis for H0

essentially reproduces the adopted prior for this parameter. We find that the degeneracy
was not broken at a background level for this dataset, given the small differences between
the statistical analyses for fgaspzq.

5.3.2 Combination with other probes

When including fgaspzq to SNIa`BAO, differences between w0 shift notably in regards
to the previous case (Figs. 5.2 and 5.3). This data combination provides more distinct
values for Ωc,0, whereas w0 substantially overlaps. We conducted the same analysis, but
for fgaspzq ` SNIa and fgaspzq ` BAO, and found similar results. Furthermore, while
the constrains for w0 remain smaller for rwCDM, the error propagations for this model
now play a bigger role constraining the other parameters. This can be visualized by the
enlargement of the error bars for rwCDM in Fig. 5.2. See Figs. 5.7 and 5.8 for the full
plots.

Lastly, we find comparable values for Ωc,0 for the fgaspzq`CMB, but w0 diverges. Such
differences were anticipated, as per our choice for breaking the degeneracy at linear level.
Moreover, we again find a phantom value for w0 at more than 1σ for w̄CDM. Just as in
the case for fgaspzq alone, CMB results find a phantom value for w0 “ ´1.57`0.50

´0.40 (Table
4 in Ref. [15]) when using the same data from Planck. Since both fgas and CMB datasets
show a preference for phantom DE for this model, the net effect also results in a lower
w0. When analyzing rwCDM, we find that for either fgas `SNIa`BAO or fgaspzq `CMB,
w0 is consistent with a vanishing interaction (w0 “ ´1) at 2σ. Similarly to the analyses
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Figure 5.1: Triangle plot for fgaspzq data for w̄CDM (red) and rwCDM (blue). Ωc,0 is
essentially the same in both approaches, while w0 do not agree at 1σ. A phantom dark
energy for w̄CDM is in agreement with [55] [57]. For rwCDM, the tight constraints for
w0 are due to the fact that this parameter appears directly in the expression for Ω̃c,0, as
opposed to the dynamical case. On the other hand, the posterior distribution for H0 is
essentially a reproduction of the prior, as fgaspzq data imposes weak constraints on this
quantity. We find the statistical differences between the two models to be insufficient to
break the dark degeneracy in this analysis.

with only gas mass fraction, we find that combinations of fgaspzq with supernovae, BAO
and CMB probes do no have an impact in breaking the dark degeneracy.
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Analysis Ωc,0 w0

w̄CDM
fgaspzq 0.252 ˘ 0.030 ´1.50`0.34

´0.22

fgaspzq ` SNIa ` BAO 0.261 ˘ 0.011 ´1.043 ˘ 0.038

fgaspzq ` CMB 0.221`0.016
´0.021 ´1.209`0.088

´0.10

rwCDM
fgaspzq 0.256 ˘ 0.030 ´1.106`0.068

´0.042

fgaspzq ` SNIa ` BAO 0.232 ˘ 0.017 ´1.050 ˘ 0.024

fgaspzq ` CMB 0.228 ˘ 0.020 ´1.040`0.020
´0.023

Table 5.2: Mean and 1σ values found for the analysis performed for w̄CDM and w̃CDM.
When analyzing fgaspzq only, the models do not agree for the EoS parameter w0 at 1σ
C.L.. For fgaspzq ` CMB, the variation in w0 between the two approaches is expected, as
we opted to break the degeneracy at linear scales.
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Figure 5.2: Triangle plot for fgaspzq `SNIa`BAO data. w̄CDM is shown in red, whereas
rwCDM is shown in blue. Now, w0 substantially overlaps, while differences in Ωc,0 for
the two approaches become more apparent. Although the error bars for w0 in rwCDM
remain tight, the error bars for the other parameters increase due to error propagation, in
regards to fgaspzq only. Just as in the previous analysis, we find no substantial evidence
for breaking the dark degeneracy with fgas ` SNIa ` BAO.
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Figure 5.3: Triangle plot for fgaspzq`CMB data. w̄CDM is shown in red, whereas rwCDM
is shown in blue. Differences between the two approaches are expected for this analysis,
given our choice to break the degeneracy at linear scales. Once again, the phantom w0

for wCDM is consistent with the findings for both fgaspzq and CMB [15].
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5.3.3 Model-independent determination of CDM energy density

With the purpose of assessing which model is favored by fgaspzq data, we compare
our previous results with a model independent value of Ωc,0, obtained from a Gaussian
process (GP) reconstruction of ρcpzq. We rewrite Eq. 1.69 as

ρcpzq “ ρbpzq

”KpzqApzqΥpzq

f ref
gas pzq

˜

drefA pzq

dApzq

¸3{2

´ 1
ı

. (5.1)

We employ identical priors from Tab. 5.1 for the astrophysical parameters, as well as
h and 100ωb,0, and use M14 data to perform the GP reconstruction. We reconstruct
ρcpzq for five kernels and chose the one that maximized the GP marginal likelihood,
Matérnp9{2q (M92). In this instance, we found ρc,0 “ 29.1˘6.4¨10´31g{cm3, corresponding
to Ωc,0 “ 0.29 ˘ 0.06, with H0 “ p73.2 ˘ 1.3q km{s{Mpc (R21). Table 5.4 presents the
results for all kernels tested, although they do not vary significantly. An image of this
reconstruction is shown in Fig. 5.4. An analogous figure containing all the kernels used
in this work is presented in Fig. 5.9.

We calculate the discrepancy D “ |X ´ Y |{
a

σ2
X ` σ2

Y , where X and Y are the mean
values of a given quantity and σX and σY their respective errors, between our models’
predictions for Ωc,0 and the model-independent value from GP. For the fgaspzq, we find
0.53σ for w̄CDM and 0.47σ for rwCDM. As presented in Tab. 5.2 and 5.1, the dissimilar-
ities between the two approaches are small for Ωc,0, and exhibit no statistical relevance.
The discrepancies for other samples is displayed in Tab. 5.3. For the data combination
fgaspzq `SNIa`BAO, we have the biggest difference between the discrepancies D, which
is expected, as this data combination provides the most contrasting values of Ωc,0 for both
models. On the other hand, the highest discrepancies are found for fgaspzq `CMB, which
is attributed to the variations between fgaspzq and CMB data. Overall, we consider the
discrepancies insignificant, and unable to determine a preference for any of the cosmolo-
gies tested. This is attributed both to the large errors associated to the current fgaspzq

data and the similarities for the statistical analyses between w̄CDM and rwCDM.
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Figure 5.4: Values of the reconstructed ρc for GP using Matérn(9{2). Central values are
denoted with a line, while the 1σ confidence level is represented by the shaded region.
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Figure 5.5: Result for Ωc,0 from M92 (in black), where H0 “ 73 ˘ 1.3 km{s{Mpc was
employed. The red and blue curves are the results for w̄CDM and rwCDM, respectively
for the data combination fgaspzq ` SNIa ` BAO.
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Analysis Discrepancy(σ)

w̄CDM
fgaspzq 0.53

fgaspzq ` SNIa ` BAO 0.43

fgaspzq ` CMB 1.04

rwCDM
fgaspzq 0.47

fgaspzq ` SNIa ` BAO 0.86

fgaspzq ` CMB 0.91

Table 5.3: Discrepancies for w̄CDM and rwCDM in comparison with the Ωc,0 from the GP
reconstruction, using H0 “ 73 ˘ 1.3 km{s{Mpc. The biggest difference between models is
found for fgaspzq ` SNIa ` BAO, while the highest discrepancies are found for fgaspzq `

CMB. In general, we consider the discrepancies too small for a substantial preference for
either w̄CDM or rwCDM.
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Figure 5.9: Gaussian process results with all kernels. M92 stands for the kernel
Matérnp9{2q, M72 for Matérnp7{2q and so on. As in Fig. 5.4, the best-fit values are
denoted with a line, and the 1σ confidence level is represented by the shaded region.

Kernel ρc,0r10
´31 g

cm3 s ωc,0 Ωc,0 Loglike

M92 29.1 ˘ 6.4 0.14 ˘ 0.03 0.29 ˘ 0.06 ´161.1678

M72 28.6 ˘ 6.6 0.14 ˘ 0.03 0.28 ˘ 0.07 ´161.2062

M52 27.7 ˘ 7.0 0.14 ˘ 0.04 0.28 ˘ 0.07 ´161.3676

M32 25.7 ˘ 8.9 0.13 ˘ 0.05 0.26 ˘ 0.09 ´162.2346

Exponential 30.6 ˘ 6 0.15 ˘ 0.03 0.30 ˘ 0.06 ´161.1727

Cauchy 29.1 ˘ 6.4 0.14 ˘ 0.03 0.29 ˘ 0.06 ´161.1766

Table 5.4: Results for GP for different kernels. M92 stands for the kernel Matérnp9{2q,
M72 for Matérnp7{2q and so on. For Ωc,0, we used H0 “ p73.2 ˘ 1.3q km{s{Mpc

.



Chapter 6

Conclusions and Perspectives

The theoretical and technological advancements in the past century have elevated cos-
mology to a science of precision, as well as establishing the ΛCDM as the best cosmological
model up to date [15–21]. Nonetheless, the physical nature of the dark sector, equivalent
to „ 95% of the total energy density of the Universe, remains undetermined, due to the
fact that all observations of its components are indirect. In this sense, our unfamiliar-
ity with the dark sector motivates the pursue of alternative cosmologies, such as time
dependent equations of state [72–74] and scalar fields [75].

Additionally, the possibility of a non-gravitational coupling between DE and DM has
also been considered in the literature [85–87], since there is no reason, a priori, to assume
that the dark components do not interact. In this sense, phenomenological models offer a
route to explore this supposition, without resorting to the complexities of particle physics.
While numerous forms of interactions have been proposed [29, 88–92, 95–97, 117], some
models face instabilities at perturbative level, or violate the weak energy condition [87,
107]. When confronted with observational data, results for coupling models normally favor
a small interaction in the dark sector compatible with ΛCDM at few sigma. Nevertheless,
this hypothesis cannot be discarded as of yet.

Furthermore, a degeneracy in the dark sector arises from the Einstein field equations,
making it impossible for models with the same total value of energy-momentum tensor
to be completely distinguished by certain types of data [24–29]. This dark degeneracy is
inevitable at scales where the Universe obeys the Cosmological Principle, while can be
circumvented with the right parameterization choices at linear perturbative level. Even
so, being able to differentiate the models at smaller scales is not always possible for
all types of data [30]. The dark degeneracy has also been discussed in the literature
in the context of interacting models [26, 28, 30]. Most notoriously, Ref. [30] developed
connections between quantities of degenerated models with dynamical and interacting
scenarios, where in the latter, the dark sector is constituted by dark matter interacting
with a cosmological constant.

Throughout this thesis, we have investigated ways to obtain a better understanding
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of the dark degeneracy and to contribute to the works on this subject already present
in the literature. In Chapter 4, we studied how an interaction based on the generalized
Chaplygin gas could act as a dynamical DE model, the w̄gCg. We showed that the
dark degeneracy mapping for this particular case leads to a time varying one-parameter
EoS parameter for the DE component. This result has two remarkable features: (i)
we found a dynamical evolution for the DE component with a single parameter; and
(ii) the resulting w̄x pzq naturally does not cross the phantom line, thereby satisfying
0 ą w̄x pzq ě w̄x pz “ 0q “ w0 and avoiding instabilities. Another interesting property
of the w̄gCg is that at early times the DE EoS behaves as a pressureless component.
Considering a DE luminal sound speed, it affects the clustering in the matter-dominated
epoch. In that sense, the model works as a mechanism that prevents all pressureless
component of clustering. From the observational perspective, we showed that the current
available data sets, specially CMB, provide strong constraints on the extra parameter w0,
in good agreement with the ΛCDM model. We also briefly discussed the current tensions
of cosmology in light of the model, and found that while it does not have much impact on
the H0 values, the S8 tension can be alleviated to 1σ, but only at the cost of introducing
a tension in w0.

In Chapter 5, we explored the possibility of breaking this degeneracy in the background
by employing fgaspzq data, which offers direct measurements Ωc. We studied one of the
parameterizations discussed in Ref. [30], the (w̄CDM, rwCDM) pair. We performed a
parameter estimation for different datasets and found that the degeneracy is not broken
from the current fgaspzq data alone or combined with other probes. We compare these
results with a model-independent value for Ωc,0 obtained through Gaussian Process by
calculating the discrepancies for Ωc,0 in each analysis. Our results show no statistically
significant preference for either of the evaluated cosmologies. We also find rwCDM to be
consistent with a vanishing interaction at » 2σ for all data combination employed.

Overall, we expect future experiments to provide significantly tighter constrains for
interacting models, contributing with information for the viability of this hypothesis.
Moreover, if the next generations of fgaspzq measurements are able to considerably lower
its error bars, gas mass fraction data could become a remarkable probe for breaking the
dark degeneracy, especially when combined with other experiments. If, in addition to
that, another type of background data independent of Hpzq is considered, we expect to
obtain more constraining results for the dark degeneracy at background level.
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