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Camila Nascimento Franco

ANALYSIS OF THE STATISTICAL ISOTROPY IN THE DISTRIBUTION OF
STRUCTURES IN THE LOCAL UNIVERSE

ABSTRACT

We investigate the statistical isotropy of the Local Universe by employing model-
independent analyses using the Arecibo Legacy FAST Alfa Survey (ALFALFA) data,
which covers a redshift range of 0 ă z ă 0.06.

The flat-ΛCDM model currently exhibits the best agreement with observational data
obtained from various cosmic tracers. This model is based on the Cosmological Princi-
ple, which assumes statistical homogeneity (invariance under translation) and isotropy
(invariance under rotation) on large scales.

Our analysis specifically examines the issue of isotropy by exploring the directional
characteristics of the Local Universe through the ALFALFA catalog. This catalog encom-
passes „ 7000 deg2 of the sky and includes 31502 extragalactic HI sources divided between
the northern and southern Galactic hemispheres. While numerous isotropy analyses have
been conducted using cosmic microwave background radiation (CMB) data at z » 1100,
only a few studies have employed galaxy catalogs, particularly at low redshifts (z ă 0.06).

Our preliminary findings suggest that the Local Universe is statistically isotropic.
However, our analysis reveals the presence of significant underdensities in certain regions,
particularly in proximity to the Local Cosmic Void, which was initially described by Tully
& Fisher (1987). To assess isotropy, we utilized the two-point angular correlation function,
employing the Landy-Szalay estimator as statistical measure. Additionally, we employed
log-normal simulations (which consider the best Planck’s cosmological parameters) to
estimate uncertainties.

To gain insight into the properties and morphology of the examined structure, we
determined the parameters θ0 (the transition scale between nonlinear and linear regimes)
and β (which quantifies matter clustering) at small and large scales. Furthermore, we
evaluated the statistical significance of our results, conducted complementary tests using
simulated voids, and performed comparative investigations by referring to existing liter-
ature on voids in the Local Universe. Our findings indicate that, apart from the Local
Cosmic Void (with a number-density contrast of δ » ´0.7), the region covered by the
ALFALFA survey also encompasses partially other underdense regions or voids, including
the Dipole Repeller.
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Chapter 1

Introduction

One of the pillars of the ΛCDM (Λ is the cosmological constant and CDM means Cold
Dark Matter) model, the Cosmological Principle (CP) is based on the assumption of
statistical homogeneity and statistical isotropy, meaning that on large scales –around
100 Mpc (COLEMAN and PIETRONERO, 1992; HOGG et al., 2005; LAURENT et al.,
2016; NADATHUR, 2013; SARKAR et al., 2009; SARKAR and PANDEY, 2016; SCRIM-
GEOUR et al., 2012) and, in the Local Universe, 20˝ (AVILA et al., 2019)–, the universe
is statistically homogeneous and isotropic. Homogeneity refers to translation invariance
(inexistence of privileged locations), while isotropy refers to rotational invariance (absence
of privileged directions) (RYDEN, 2003; SCHUTZ, 2009). Although they usually go hand
in hand, homogeneity and isotropy are independent. This means that one does not nec-
essarily imply the other. In other words, we can have homogeneity without isotropy (and
vice versa). However, a theorem establish that isotropy across all points directly implies
homogeneity (SCHUTZ, 2009).

Another important point is that, as we consider smaller scales, we observe that the
universe becomes increasingly clumpy. The presence of structures such as planets, clusters,
and voids becomes more relevant, and the clustering of structures becomes more evident.
Therefore, in analyses of the CP we must take into account the statistical aspect of
homogeneity and isotropy.

The CP has been tested using data from various astronomical surveys with different
tracers (ALURI et al., 2022; APPLEBY and SHAFIELOO, 2014; AVILA et al., 2019,
2022; BENGALY et al., 2019, 2018; BOLEJKO and WYITHE, 2009; SYLOS LABINI
and BARYSHEV, 2010), such as quasars (FUJII, 2022; GONÇALVES et al., 2018a,
2021; SECREST et al., 2021), CMB (BERNUI, 2008; HANSEN et al., 2004; KHAN
and SAHA, 2022; MARQUES et al., 2018), gravitational waves (GALLONI et al., 2022),
short gamma-ray bursts (BERNUI et al., 2008), BAO (GONÇALVES et al., 2018b), and
galaxies (BENGALY et al., 2017).

Furthermore, it is of interest to apply the CP to the Local Universe (LU), due to our
lack of knowledge of all the structures present and how they are clustered, in particular

1



2 CHAPTER 1. INTRODUCTION

because many of these structures are hidden to us by the Milky Way disc (GUAINAZZI
et al., 2005; HWANG and GELLER, 2013). An example of a structure that is still
surrounded by many questions is the Local Cosmic Void (LCV), which is located in the
vicinity („ 1 Mpc) of the Local Group (HOFFMAN et al., 2017; TULLY et al., 2019;
WHITBOURN and SHANKS, 2014), as illustrated in Figure 1.1.

Figure 1.1: Overview of the structure surronding the Local Cosmic Void. The LCV fills the
empty region above the Milky Way, which is at the origin of the colored arrows (TULLY
et al., 2019).

First described by TULLY and FISHER (1987), this structure has a low density of
luminous matter inside, but we still do not have all the information about its main fea-
tures: location, size, shape, etc. Recent studies suggest that the LCV is a 150 ´ 300Mpc
void (BÖHRINGER et al., 2020; PLIONIS and BASILAKOS, 2002; TULLY et al., 2008,
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2013, 2019; WHITBOURN and SHANKS, 2014, 2016), and it is these dimensions that
make it relevant (KEENAN et al., 2013; TULLY et al., 2019). Another interesting char-
acteristic is the dynamical effects caused by it, such as high peculiar velocities in nearby
galaxies (moving away from the LCV at a velocity of 260 km s´1) (HOFFMAN et al.,
2017; TULLY et al., 2008, 2013, 2019); this information is important, for instance, for
calibrating standard candles that help measure H0.

The presence of filaments, with clusters at their intersections, and voids is predicted
by the ΛCDM model (PANDEY et al., 2011; PEEBLES, 2001; SARKAR et al., 2022;
SPRINGEL et al., 2006; VOGELSBERGER et al., 2014). However, a void with the di-
mensions of the LCV can pose a challenge for the current model (PEEBLES and NUSSER,
2010), unless its apparent huge size is caused by an observational effect and these struc-
tures are actually a collection of interconnected smaller voids (FRANCO et al., 2023;
MOORMAN et al., 2014).

Thus, in addition to dedicating ourselves to the study of the properties of statistical
isotropy in the Local Universe, we also investigated how void structures are distributed
in our sample. For this purpose, we chose the ALFALFA catalog (Arecibo Legacy Fast
ALFA Survey), which detected extragalactic sources of HI clouds at 21 cm in the redshift
range z ă 0.06, and divided it into a reasonable number of patches. We used the two-
point angular correlation function (2PACF) –which only requires data projected onto the
celestial sphere (right ascension and declination)– as our statistical gauge, thus that our
analyses were independent (or weakly dependent) on cosmological model hypotheses.

This dissertation is structured as follows: in Chapter 2, the foundations of modern
cosmology will be presented, which are relevant for understanding the definitions used
throughout the work. Then, the data selection criteria will be detailed in Chapter 3, as
well as the process of producing synthetic catalogs used to estimate the 2PACF and the
uncertainties associated with the measurements. The statistical methods used to examine
the final sample will be addressed in Chapter 4, and our results will be presented and
discussed in Chapter 5. Finally, our conclusions will be summarized in Chapter 6.
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Chapter 2

Fundamentals of Modern Cosmology

In this chapter, the theoretical foundations of the ΛCDM cosmological model and relevant
topics for the study of cosmology will be introduced. In Section 2.1, the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric will be presented, providing the necessary
knowledge to understand the dynamics of spacetime in terms of the Friedmann equations
(Section 2.2). In Section 2.3, the Hubble-Lemaître Law and the cosmological redshift will
be briefly introduced. Then, in Section 2.4, the determination of cosmological distances
will be addressed. Finally, in Section 2.5, the main observational foundations of cosmology
will be summarized.

2.1 Friedmann-Lemaître-Robertson-Walker (FLRW)

metric

The dynamics of the universe in the context of General Relativity can be understood
through the interaction between the geometry of spacetime and the energetic content it
contains (EINSTEIN, 1905). The interaction between the geometry and the matter-energy
content is mathematically described by the equations developed by Einstein, written as

Rµν ´
1

2
gµνR “

8πG

c4
Tµν , (2.1)

where Rµν is the Ricci tensor, gµν are the components of the metric tensor, R is the Ricci
scalar, Tµν is the stress-energy tensor, G is the Newton’s universal gravitational constant
and c is the speed of light (ROOS, 2015).

When weak gravitational fields and non-relativistic velocities, v ! c, are considered,
the Einstein equations (2.1) reduce to the Newtonian limit, given by the Poisson equation
for Newtonian gravity in the presence of a density ρpx, y, zq, in the form

∇⃗2Φpx, y, zq » 4πGρpx, y, zq. (2.2)

5



6 CHAPTER 2. FUNDAMENTALS OF MODERN COSMOLOGY

The solution of the Einstein equations requires the definition of a metric gµν and
an energy-momentum tensor Tµν . The content of a locally homogeneous and isotropic
spacetime is represented by a fluid with pressure p, a four-velocity vector uµ “ dxµ{dτ

(where τ is the proper time), and a density ρ, according to

Tµν “ pρ ` p{c2quµuν
` pgµν . (2.3)

When we assume homogeneity and isotropy, locally, the intrinsic curvature is constant,
and we use the FLRW (Friedmann-Lemaître-Robertson-Walker) metric (BAUMANN,
2022; PETTINI, 2018),

ds2 “ ´c2dt2 ` a2ptq

«

dr2

1 ´ k r2

R2
0

` r2pdθ2 ` sin2 θdϕ2
q

ff

, (2.4)

where t is the cosmic time, aptq is the scale factor that measures the rate of expansion
of spacetime, k is the normalized curvature constant, and R0 is the physical curvature
today (BAUMANN, 2022).

Conveniently, one adopts a change of variable for the radial coordinate r by making
the substitution:

dχ ”
dr

´

1 ´ k r2

R2
0

¯1{2
, (2.5)

which results in

ds2 “ ´c2dt2 ` a2ptqrdχ2
` S2

kpχqpdθ2 ` sin2 θdϕ2
qs, (2.6)

where

Skpχq ”

$

’

’

’

&

’

’

’

%

R0 sinh
´

χ
R0

¯

for k “ ´1,

χ for k “ 0,

R0 sin
´

χ
R0

¯

for k “ `1.

(2.7)

The normalized curvature constant takes the values k “ 0 when space is flat, k “ ´1 when
there is negative curvature (hyperbolic space), or k “ `1 when there is positive curvature
(spherical space). The three cases are illustrated in Figure 2.1 for the bidimensional case.

2.2 Spacetime dynamics

In this section, we will explore the Friedmann equations (Subsection 2.2.1), which de-
scribe the expansion of the universe and are of great importance for cosmology. We will
then introduce the background cosmological parameters (Subsection 2.2.2), dimensionless
quantities that are observationally measured and are related to the Friedmann equations.
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Figure 2.1: The three-space can be flat, spherical or hyperbolic. The first one is the
simplest possibility. The next one is the spherical case, which has constant positive
curvature. The last one is the hyperbolic possibility, with constant negative curvature. In
this figure, we illustrate these three geometries for the two-dimensional case (BAUMANN,
2022).

2.2.1 Friedmann equations

Starting from Equations (2.4) and (2.1), assuming a perfect fluid with no viscosity, no heat
conduction (adiabatic), described by Equation (2.3), and considering the assumptions of
homogeneity and isotropy, we arrive at two independent solutions, collectively called the
Friedmann equations (BAUMANN, 2022; SCHUTZ, 2009). The first equation describes
the evolution of the scale factor1 of the universe, denoted by aptq, and is given by

„

9aptq

aptq

ȷ2

“
8πG

3
ρptq ´

kc2

a2ptqR2
0

, (2.8)

where ¨ represents the derivative with respect to cosmic time, ρptq is the density, and
pptq is the pressure of the fluid (RYDEN, 2003; SCHUTZ, 2009). The second equation
provides information about the acceleration of the spacetime and is given by

:aptq

aptq
“ ´

4πG

3

„

ρptq `
3pptq

c2

ȷ

. (2.9)

For the usual kind of matter, rρptq + 3pptq{c2s ą 0 implying that :a ă 0, which means
that the expansion is gradually slowing down over time until it stops (PADMANABHAN,
1993).

Additionally, there is a third equation obtained by taking the time derivative of Equa-
tion (2.8),

9a:a

a2
´

9a3

a3
´

kc2

R2
0

9a

a3
“

4πG

3
9ρ, (2.10)

1The scale factor is a dimensionless quantity.



8 CHAPTER 2. FUNDAMENTALS OF MODERN COSMOLOGY

substituting Equation (2.9) into Equation (2.10),

9a

a

„

´
4πG

3

ˆ

ρ `
3p

c2

˙ȷ

´
9a3

a3
´

kc2

R2
0

9a

a3
“

4πG

3
9ρ. (2.11)

Finally, using Equation (2.8), we found that

9ρ ` 3
9a

a

´

ρ `
p

c2

¯

“ 0, (2.12)

which expresses the conservation of energy and is known as the fluid equation (BAU-
MANN, 2022).

Thus, we have a system of equations that can be solved by resorting to the linear
relationship for the perfect fluids between pressure and density, as prescribed by the
equation of state

pptq “ wρptqc2, (2.13)

where the parameter w has a specific value for each component present in the universe.
The solution to Equation (2.12) will then be obtained through the integration

ż ρ0

ρ

dρ1

ρ1
“ ´3p1 ` ωq

ż a0

a

da1

a1
, (2.14)

which, for a constant ω, results in

ρpaq “ ρ0aptq´3p1`ωq. (2.15)

According to the concordance cosmological model, ΛCDM, there are three main com-
ponents that describe the material content of the universe: matter, radiation, and dark
energy. Matter is a non-relativistic component and can be either baryonic (protons, neu-
trons, and electrons2) or dark, with ω “ 0; radiation has ω “ 1{3; and dark energy has
ω “ ´1 (PETTINI, 2018; RYDEN, 2003). Substituting these values into Equation (2.15),
we get

ρmptq “ ρm0aptq´3, (2.16)

ρrptq “ ρr0aptq´4, (2.17)

ρΛ “ ρΛ0. (2.18)

In each phase the universe went through, one of these components was dominant, as
can be observed in Figure 2.2. Initially, radiation was the dominant component until the
radiation-matter equality at arm « 3 ˆ 10´4 (trm « 0.05 Myr). Then, matter became
dominant until amΛ « 0.77 (tmΛ « 10 Gyr). Currently, at a0 “ 1 (t0 « 14 Gyr), dark

2Electrons are charged leptons, but since they have much smaller masses compared to protons, this
grouping is accepted (PETTINI, 2018; RYDEN, 2003).
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energy is the dominant component of the universe (BAUMANN, 2022; PETTINI, 2018;
RYDEN, 2003).

Figure 2.2: The evolution of energy densities is as follows: initially, radiation is the
dominant component. Then, matter becomes dominant, and finally, the era of dark
energy is reached (BAUMANN, 2022).

2.2.2 Background Cosmological parameters

Taking Equation (2.8) and considering that the curvature is k “ 0, we find that the value
of ρptq at which the universe is flat, called the critical density, ρcptq, is given by (LIDDLE,
2003).

ρcptq “
3H2ptq

8πG
, (2.19)

where the definition of the Hubble parameter, which measures the rate of expansion of
the universe at time t, was introduced as

Hptq ”
9aptq

aptq
. (2.20)

If we have a total energy density greater than ρc, the corresponding geometry will be
spherical; conversely, for a total density smaller than ρc, the geometry will be hyperbolic.
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It is useful to compare the density of the universe with the critical value. For this
purpose, we define the dimensionless density parameter, Ωptq, as follows

Ωptq ”
ρptq

ρcptq
. (2.21)

Consequently, we have the density parameters for matter, radiation, dark energy, and
curvature, respectively, given by

Ωmptq ”
8πGρmptq

3H2ptq
, (2.22)

Ωrptq ”
8πGρrptq

3H2ptq
, (2.23)

ΩΛptq ”
8πGρΛptq

3H2ptq
, (2.24)

Ωkptq ” ´
kc2

a2R2
0H

2ptq
“ 1 ´ Ωm ´ Ωr ´ ΩΛ. (2.25)

By substituting Equations (2.20), (2.22), (2.23), (2.24), and (2.25) into Equation (2.8),
and using the results of Equations (2.16), (2.17), and (2.18), the Friedmann equation can
be written as

„

Hptq

H0

ȷ2

“ Ωra
´4

ptq ` Ωma
´3

ptq ` Ωka
´2

ptq ` ΩΛ. (2.26)

2.3 Expansion

The recession of galaxies is a key element in the evidence that the universe is expanding.
Therefore, due to its importance, a brief historical overview of the Hubble-Lemaître law
will be presented in Subsection 2.3.1. Following that, the concept of cosmological redshift
will be developed to establish its relation with the scale factor.

2.3.1 Hubble-Lemaître Law

In 1929, Edwin Hubble demonstrated that the redshift and distance of galaxies are directly
proportional (HUBBLE, 1929), based on the measurements in the Figure 2.3 (for more
details on the development of the Hubble diagram, see KIRSHNER (2004)). Moreover,
in a collaborative work with Milton Humason, this proportionality was confirmed for
even larger distances (HUBBLE and HUMASON, 1931). Even earlier, in 1927, Georges
Lemaître had published a similar result in a less circulated journal, written in French,
which made his findings unknown for some time (LEMAÎTRE, 1927).

The contributions of Hubble and Lemaître gave rise to the law that now bears both
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Figure 2.3: The Hubble diagram shows the velocity–distance relation among extragalactic
nebulae. Note that the horizontal axis represents distances in units of parsec, and the
vertical axis corresponds to velocities cz, However, there is an error in the units, which
should be km/s (HUBBLE, 1929).

their names –the Hubble-Lemaître Law– and is written as

cz “ H0d, (2.27)

where H0 is the Hubble constant measured today, t “ t0, and can be expressed in terms
of the dimensionless Hubble constant, h,

h ”
H0

100km s´1 Mpc´1 . (2.28)

Currently, according to the measurements by RIESS et al. (2016), the value of this con-
stant is3

H0 “ 73.8 ˘ 2.4km s´1 Mpc´1. (2.29)

The equation (2.27) can be rewritten using the non-relativistic approximation v “ cz.
Thus, we have

v “ H0d, (2.30)

where v is the radial velocity of galaxies. This expression is valid only at low redshifts

3Notice, however, that there is currently a tension in the measurements of h (DI VALENTINO et al.,
2021).



12 CHAPTER 2. FUNDAMENTALS OF MODERN COSMOLOGY

(z À 0.2; RYDEN (2003)). Therefore, we conclude that there is a recession of galaxies,
indicating an expansion of our universe.

Isotropy states that observers in different positions in space should perceive the same
recession of nearby galaxies relative to their own position. Therefore, the Hubble-Lemaître
law is a consequence of this assumption in the universe.

2.3.2 Cosmological redshift

When considering the propagation of a photon in the framework of General Relativity,
it follows a null geodesic (ds “ 0). Assuming a radial displacement (dθ “ dϕ “ 0),
Equation (2.4) reduces to

cdt

aptq
“ ˘

dr
´

1 ´ k r2

R2
0

¯1{2
, (2.31)

in which the positive sign indicates emission and the negative sign, the reception of a
photon.

If two photons are emitted, one at time te and the other at time te ` δte, and received
at times t0 and t0 `δt0

4, respectively, the total time it takes for the first light ray to travel
from r “ 0 to r “ r0 is given by the integral (LIDDLE, 2003; THEUNS, 2021)

ż t0

te

cdt

aptq
“

ż r0

0

dr
´

1 ´ k r2

R2
0

¯1{2
, (2.32)

while the second one will travel the same path with a total time given by

ż t0`δt0

te`δte

cdt

aptq
“

ż r0

0

dr
´

1 ´ k r2

R2
0

¯1{2
. (2.33)

Comparing Equations (2.32) and (2.33), we have that

ż t0

te

cdt

aptq
“

ż t0`δt0

te`δte

cdt

aptq
. (2.34)

Rearranging the integration limits on the right-hand side, we have

ż t0`δt0

te`δte

cdt

aptq
“

ż t0

te

cdt

aptq
`

ż t0`δt0

t0

cdt

aptq
´

ż te`δte

te

cdt

aptq
, (2.35)

so
ż t0`δt0

to

cdt

aptq
“

ż te`δte

te

cdt

aptq
. (2.36)

4δte and δt0 are infinitesimal.
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Thus,
δt0
apt0q

“
δte
apteq

. (2.37)

In an expanding universe, where apt0q ą apteq, it follows that δt0 ą δte (LIDDLE, 2003).

Considering now a single wave with period δte and wavelength λe “ cδte, we find that
the emitted photon and the observed photon obey the relation (LIDDLE, 2003; THEUNS,
2021)

λ0

λe

“
apt0q

apteq
” 1 ` z, (2.38)

where z is the cosmological redshift.

2.4 Cosmological distances

In cosmology, measuring distance requires taking into account the expansion of the uni-
verse and the fact that light takes a finite amount of time to reach the observer. Therefore,
considering the FLRW metric, in the following subsections, we will discuss proper distance,
comoving distance, luminosity distance, and angular diameter distance.

2.4.1 Proper Distance

The direct implication of the assumption of homogeneity is the existence of a universal
cosmic time, t, which allows the same sequence of events in the universe to be viewed by
different observers (PETTINI, 2018). As a consequence, it is possible to obtain the dis-
tance between two events, A and B, in a reference frame where they occur simultaneously,
that is, where tA “ tB. This is referred to as the proper distance, dpptq.

Formally, we can obtain the expression for dp starting from the FLRW metric (Equa-
tion (2.4)),

ds2 “ ´c2dt2 ` a2ptq

«

dr2

1 ´ k r2

R0
2

` r2
`

dθ2 ` sin2 θdϕ2
˘

ff

, (2.39)

assuming the condition dθ “ dϕ “ 0 and, as they are simultaneous events, dt “ 0, we
have,

ds2 “ a2ptq

«

dr2

1 ´ k r2

R0
2

ff

, (2.40)

and
dpptq “

ż s

0

ds1
“ aptq

ż r

0

dr1

´

1 ´ k r12

R0
2

¯1{2
, (2.41)
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whose possible solutions depend on the value assumed for k, namely

dpptq “ aptq

$

’

’

’

&

’

’

’

%

R0 sin
´1

´

r
R0

¯

for k ą 0,

r for k “ 0,

R0 sinh
´1

´

r
R0

¯

for k ă 0.

(2.42)

Thus, in Euclidean geometry (k “ 0), the proper distance to an object is equal to its
coordinate distance. The same is not true when we have a spherical geometry (k ą 0),
as sin´1 r ą r, and consequently, the proper distance will be greater than the coordinate
distance. Similarly, in hyperbolic geometry, the proper distance will be smaller than the
coordinate distance, as sinh´1 r ă r (PETTINI, 2018).

2.4.2 Comoving Distance

The proper distance is related to the trajectory of the photon emitted at te and observed
at t0, with ds “ dθ “ dϕ “ 0, and

dpptq “

ż t0

te

cdt

aptq
. (2.43)

The information we extract from the spectrum of a galaxy is its redshift, z, which is
related to the scale factor through

1 ` z “
apt0q

aptq
“

1

aptq
, (2.44)

where we define apt0q ” 15. Differentiating Equation (2.44) with respect to time t, we
have

dp1 ` zq

dt
“

d

dt

„

apt0q

aptq

ȷ

“ ´
apt0q

a2ptq

daptq

dt
. (2.45)

Since apt0q is a constant, we can simplify further

dz “ ´
9aptq

a2ptq
dt “ ´

Hpzq

aptq
dt, (2.46)

With the introduction of the Hubble parameter Hpzq ” 9aptq{aptq. This equation relates
the rate of change of redshift with respect to time to the rate of change of the scale
factor with respect to time. Substituting this expression into Equation (2.43), we have
the expression for the comoving distance,

dc “ c

ż z

0

dz1

Hpz1q
. (2.47)

5The scale factor is a dimensionless quantity.
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This distance is defined in a way that accounts for the expansion of the universe over
time, as illustrated in Figure 2.4.

Figure 2.4: The comoving distance between points on an imaginary coordinate grid re-
mains constant as the universe expands (BAUMANN, 2022).

From Equation (2.26), we obtain

dc “ c

ż z

0

dz1

a

Ωr,0p1 ` z1q4 ` Ωm,0p1 ` z1q3 ` p1 ´ Ωm,0 ´ ΩΛ,0qp1 ` z1q2 ` ΩΛ,0

. (2.48)

As the contribution from radiation is negligible, it can be safely disregarded.

2.4.3 Luminosity Distance

When the absolute luminosity of a source, L, is known and the flux, F , can be measured,
the distance to that source is obtained using the function known as the luminosity distance,
dL,

dL ”

ˆ

L

4πF

˙1{2

. (2.49)

Considering the expansion of the universe, this relation needs to be modified. Assum-
ing that photons with wavelength λe were emitted in the time interval δte, their observa-
tion will occur in the time interval δt0. Given the emission energy of a photon, hνe “ hc{λe,
as the photon redshifts, the energy will decrease according to hν0 “ hve{p1` zq, and con-
sequently, the flux will also decrease (PETTINI, 2018; RYDEN, 2003; THEUNS, 2021).
The result for a universe with approximately zero curvature is given by

dL “ dcp1 ` zq (2.50)
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2.4.4 Angular Diameter Distance

Assuming a light source with a physical size ℓ, as illustrated in Figure 2.5, we can define
the angular diameter distance, dA, as

dA ”
ℓ

δθ
. (2.51)

Figure 2.5: The angular diameter distance is the measurement of the angle subtended by
the apparent diameter of a luminous source, as seen from an observer located at a fixed
point in space. The larger the angle, the greater the angular diameter distance.

This quantity is a way to measure how large objects appear, assuming Euclidean geom-
etry (LIDDLE, 2003). In the case of non-zero curvature, there is a relationship between
dA and the comoving distance (THEUNS, 2021),

dA “
dc

1 ` z
. (2.52)

The angular diameter distance is a quantity that can be obtained through observations,
unlike the comoving distance.

2.5 Cosmological Observables

Next, we will provide a brief summary of some of the key cosmological observables: the
accelerated expansion of the universe, the dark matter, and the cosmic microwave back-
ground (CMB).
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2.5.1 Accelerated expansion

As seen in Section 2.3.1, our universe is undergoing expansion. However, it remained to
be determined what type of expansion it was: constant, accelerated, or decelerated. The
answer was only provided seven decades after Hubble’s discovery through the independent
results obtained by RIESS et al. (1998) and PERLMUTTER et al. (1999) using Type Ia
supernovae: the universe is in a phase of accelerated expansion.

Both studies found that the density parameter ΩΛ has a non-zero value. Thus, it is
necessary to introduce a component with negative pressure in order to account for the
accelerated expansion, component known as dark energy, into Equation (2.9). However,
the nature of this energy, and its modes of interaction, still remain unknown.

2.5.2 Dark matter

In 1933, Fritz Zwicky, studying the Coma Cluster, concluded that in order for the mea-
sured line-of-sight velocity dispersion to be compatible with the theory, there must be
an additional contributor to the gravitational potential (ZWICKY, 1933). Since it is not
known for certain what this contributor is, it has been attributed the name dark matter.
X-ray observations, gravitational lensing effects, and the analyses of Vera Rubin of galaxy
rotation curves (RUBIN et al., 1980, 1985) support this evidence.

Dark matter is expected to be composed of particles that do not interact with photons,
and several candidates are being studied. One of these candidates are neutrinos, which
are relativistic particles with extremely small mass. The problem with these particles is
that they would lead to a scenario where larger structures formed before smaller ones,
being part of the hypothesis known as hot dark matter (HDM), which is inconsistent with
observations. Another possibility is the cold dark matter (CDM) hypothesis, composed of
non-relativistic particles that allow the formation of structures as predicted by the theory
(i.e., during the matter-dominated era).

2.5.3 Cosmic Microwave Background Radiation (CMB)

In the primordial universe, there was a phase of thermal equilibrium between matter and
radiation. With expansion, the photons that were once tightly coupled to baryons and
electrons become less energetic, and nuclei can capture electrons to form hydrogen. Over
time, the scattering rate of photons by electrons becomes smaller than the expansion rate
of the universe, until the last scattering occurs. At this moment, the universe ceases to be
opaque and becomes transparent, with photons traveling freely, giving rise to the Cosmic
Microwave Background (CMB).

The CMB is an electromagnetic radiation detected in the microwave range of the
spectrum and was discovered by Penzias and Wilson in 1965. This radiation is still present
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today, with a temperature T0 today, and its energy distribution is perfectly described by
a blackbody spectrum, as shown in Figure 2.6.

Figure 2.6: Spectrum of the cosmic microwave background radiation with data obtained
by the COBE satellite (MATHER et al., 1990).

The Far InfraRed Absolute Spectrophotometer (FIRAS) experiment, launched in 1989
aboard the COsmic Background Explorer (COBE) satellite, verified that the temperature
of the CMB is (FIXSEN et al., 1996; MATHER et al., 1990)

T0 “ 2.728 ˘ 0.004K. (2.53)

The WMAP (Wilkinson Microwave Anisotropy Probe; HINSHAW et al. (2013)) satel-
lite and the Planck (PLANCK COLLABORATION et al., 2020a) satellite obtained a
temperature (FIXSEN, 2009)

T0 “ 2.72548 ˘ 0.00057K. (2.54)

The COBE data also revealed the presence of a dipole with an amplitude of 3.353˘0.024

mK in the direction pℓ, bq “ p264˝.26˘0.33˝, 48˝.2˘0.13˝q. This dipole is a consequence of
the non-isotropic nature of the Local Universe, caused by the relative motions of galaxies
that affect the measurement of the CMB temperature given a net motion of our galaxy
in that direction.
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In addition to the monopole and dipole components, the CMB map shows tiny temper-
ature fluctuations that have been used to test the statistical isotropy hypothesis (ALURI
and SHAFIELOO, 2017; ALURI et al., 2017; BERNUI and HIPÓLITO-RICALDI, 2008;
BERNUI et al., 2006, 2007, 2014; BERNUI, 2008, 2009; HANSEN et al., 2004; PLANCK
COLLABORATION et al., 2020b; POLASTRI et al., 2015; RASSAT et al., 2014).
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Chapter 3

Data selection and synthetic catalogs

In this Chapter, we will present the data used in our analysis to study the statistical
isotropy in the Local Universe. In Section 3.1, we will provide a brief description of the
properties of the observational data catalog. Subsequently, in Section 3.2, we will explain
the creation of the synthetic catalogs, needed to estimate the values of the correlation
function and estimate the uncertainties of the measurements.

3.1 Observational data: the ALFALFA catalog

To study the statistical isotropy in the Local Universe, z À 0.06, we utilized the ALFALFA
catalog (Arecibo Legacy Fast ALFA Survey)1. The ALFALFA dataset was chosen due to
its convenient properties, which include: (i) a good number density (n „ 4 deg´2); (ii)
a large survey area of approximately „ 7000deg2 or „ 1{6 of the sky, allowing for the
division of the sky into multiple appropriately sized patches; and (iii) the relative bias of
the HI sources, with respect to matter, is close to that of blue galaxies (AVILA et al.,
2018; PAPASTERGIS, 2013), which, in turn, is „ 1 (AVILA et al., 2019; CRESSWELL
and PERCIVAL, 2009). These characteristics make the HI sources interesting cosmic
tracers of (dark) matter in the Local Universe.

3.1.1 General characteristics

The ALFALFA catalog was a survey that detected 31502 extragalactic HI line sources, in
21 cm, between the years 2005 and 2012, with the complete version (α.100) made available
in 2018 (HAYNES et al., 2018; JONES et al., 2016). These objects are located in the
Local Universe, within the redshift range of 0 ă z ă 0.06 (vide the redshift histogram in
Figure 3.1).

The ALFALFA’s footprint covers „ 7000 deg2 of the sky, with „ 4500 deg2 in the
northern Galactic hemisphere (NGH or Spring) and „ 2800 deg2 in the southern Galactic

1http://egg.astro.cornell.edu/alfalfa/data/index.php
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Figure 3.1: The histogram presents the distribution of redshifts for the ALFALFA data.
It illustrates the frequency of sources at different redshift intervals within the range of
0 ă z ă 0.06.
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hemisphere (SGH or Fall). Both hemispheres lie within the declination range of 0˝ ă δ ă

36˝, with the NGH covering the region of right ascensions between 7h20m ă α ă 16h40m,
and the SGH covering the region between 21h30m ă α ă 3h15m. Out of the total number
of objects, 21578 are located in the NGH, while 9924 are in the SGH, as illustrated in
Figure 3.2.
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Figure 3.2: Footprint of the ALFALFA catalog in equatorial coordinates. The central
region corresponds to the southern Galactic hemisphere, while the regions at the extremes,
together, correspond to the northern Galactic hemisphere.

The data were classified as either code 1 or code 2 according to criteria established
by the ALFALFA collaboration team (HAYNES et al., 2018). One of these criteria is the
signal-to-noise ratio (SNR). If the source is associated with an optical counterpart (OC)
with comparable redshift and has SNR ą 6.5, it is classified as code 1. Sources that
coincide with an OC but have SNR À 6.5 are considered as code 2. Code 1 sources are
nearly 100% reliable (HAYNES et al., 2018).

3.1.2 Selection criteria

Following the recommendation of the ALFALFA team, we only considered sources classi-
fied as code 1. Consequently, our sample consisted of 16285 and 9149 reliable sources in
the NGH and SGH, respectively.

Next, the hemispheres were subdivided to maximize the number of regions with a
sufficient minimum size to avoid statistical noise dominance, clustering, or voids. For this
purpose, we adopted a minimum scale for quadrilaterals greater than 20˝ (AVILA et al.,
2019). As a result, we obtained ten regions for analysis: six in the NGH and four in the
SGH (vide Figure 3.3).
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Figure 3.3: ALFALFA footprint division in 10 sky patches for statistical isotropy analyses
using the two-point angular correlation function. The regions 1–6 and 7–10 correspond
to the Spring and Fall regions, respectively.

It is important to note that each region was carefully delimited to avoid excessively
irregular shapes that could compromise the reproducibility of the analyzed footprint. In
order to ensure this condition, a few additional points were removed, resulting in our final
sample of 15993 HI clouds in the NGH and 8828 clouds in the SGH. The features of each
region can be found in Table 3.1 and in Figure 3.3.

Table 3.1: The properties of the ten analyzed regions are as follows. It is important to
note that the most significant characteristic of each region is its number density, with an
average value of n » 3.42 deg´2. The uncertainties were calculated using σn “

?
N{area,

where N is the number of sources.
Sources Area [deg2] n rdeg´2

s

Area 1 1648 522 3.15 ˘ 0.08
Area 2 2081 756 2.75 ˘ 0.06
Area 3 3372 810 4.16 ˘ 0.07
Area 4 3427 810 4.23 ˘ 0.07
Area 5 2157 688 3.13 ˘ 0.07
Area 6 3308 864 3.83 ˘ 0.07
Area 7 2474 736 3.36 ˘ 0.07
Area 8 2844 875 3.25 ˘ 0.06
Area 9 1636 558 2.93 ˘ 0.07
Area 10 1874 558 3.36 ˘ 0.08

Despite the differences in the number of sources and area in each region, our con-
cern was to maintain the number densities, n, i.e., the number of objects per unit area,
approximately equal.

3.2 Synthetic catalogs

In our analyses, we utilized two types of synthetic catalogs: random and mock catalogs.
The random catalogs were employed to estimate the two-point correlation function, which
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will be discussed in Section 4.1. On the other hand, the mock catalogs were used to es-
timate the uncertainties associated with our measurements, as described in Section 4.2.
The detailed construction of both types of synthetic catalogs will be presented in Subsec-
tions 3.2.1 and 3.2.2.

3.2.1 Random catalogs

In this work, a random catalog refers to a set of pseudo-randomly generated ordered pairs,
that are uniformly distributed over a specified range in right ascension and declination.
These catalogs reproduce the analyzed region, i.e., they have the same ranges in right
ascension and declination and the same number of points. For each region presented in
Figure 3.3, 25 catalogs of this type were generated, following the procedure described by
BERNUI et al. (2004) (see also DE CARVALHO et al. (2018); DE CARVALHO (2019);
KEIHÄNEN et al. (2019); PAPASTERGIS (2013); WANG et al. (2013)). In this way,
given a random number Ri in a range ∆δ1, the declinations will be

δi “ arcsinRi . (3.1)

The right ascensions are the values selected from a uniform distribution within the range
∆α1. An illustrative comparison between the footprint of one of the regions and its
respective random catalog can be observed in Figure 3.4.

3.2.2 Log-normal mocks catalogs

To estimate the uncertainties of our results (further details in Chapter 4), we used log-
normal catalogs (mocks). This is necessary due to the underestimation of errors when
using a random catalog for this purpose (DE CARVALHO et al., 2018, 2020; NORBERG
et al., 2009).

The current scenario is to assume a Gaussian random field to describe δ̃pxq because
(i) it is predicted by most inflationary models (see BARROW and COLES (1990) and
references therein) and (ii) the model is fully specified, i.e., statistically complete (COLES
and JONES, 1991)2. Thus we need only the 2-point correlation function ξprq, or its Fourier
transform P pkq, to describe the matter density field (AGRAWAL et al., 2017).

However, Gaussian random fields cannot describe the matter distribution, it assigns
non-zero probability for negative densities (FRY, 1986). Although small in the beginning,
the matter fluctuations grow as gravitational instability takes over, thus it cannot describe
consistently the non-linear density matter distribution at late times. This motivates
the construction of stochastic models for the density field: models which are completely

2Gaussian random fields are completely determined once we specify the following two functions, the
mean and the covariance (ADLER, 2010).
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Figure 3.4: Comparison between a random catalogue and the data cut corresponding to
Area 1 of the ALFALFA catalog.
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Table 3.2: The survey configuration used to generate a set of 1000 log-normal mock
catalogs for our analyses.

Survey configuration
z “ 0.0
b “ 1.0

Ng “ 2 ˆ 105

Lx “ 230 Mpc/h
Ly “ 230 Mpc/h
Lz “ 230 Mpc/h

Table 3.3: Latest cosmological parameters available from PLANCK COLLABORATION
et al. (2020a).

Cosmological parameters
Ωbh

2 “ 0.02236
Ωch

2 “ 0.1202
lnp10Asq “ 3.045

ns “ 0.9649
Σmν “ 0.06 eV
h “ 0.6727

specified statistically but do not violate ρ ą 0 (COLES and JONES, 1991).
One model that happen to fulfill these two conditions is the log-normal random

field (BERNARDEAU and KOFMAN, 1995; COLES and JONES, 1991; COLOMBI,
1994; KOFMAN et al., 1994; SHIN et al., 2017; UHLEMANN et al., 2016).

We generated a set of 1000 mocks using the public code3 developed by AGRAWAL
et al. (2017). Each catalog represents a realization of the input parameters provided
beforehand, which should align with the characteristics of the data catalog, as listed in
Table 3.2.

The mean and median of the redshift distribution, shown in Figure 3.1, are xzy „ 0.026.
Therefore, we opted for the approximation z » 0. The value of the bias, b, has been
previously calculated by AVILA et al. (2021) based on the results of MARTIN et al.
(2012). The number of galaxies, Ng, as well as the dimensions of the box 4 (Lx, Ly, Lz),
were chosen in order to obtain a similar number density as that of the ALFALFA catalog.

In addition to those, the code requires the cosmological parameters to be adopted in
the simulation. We use the results presented in Table 2 of PLANCK COLLABORATION
et al. (2020a), which are shown in Table 3.3.

The parameters Ωbh
2 and Ωch

2 represent the baryon and cold dark matter densities,
respectively; As corresponds to the primordial comoving curvature power spectrum am-
plitude, which quantifies the overall level of density fluctuations in the early universe;

3https://bitbucket.org/komatsu5147/lognormal_galaxies/src/master/
4in units of Mpc/h

https://bitbucket.org/komatsu5147/lognormal_galaxies/src/master/
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ns is the scalar spectral index, indicating the tilt or slope of the primordial curvature
power spectrum – it provides information about the scale dependence of density fluctua-
tions; Σmν represents the sum of the masses of neutrinos; h is the dimensionless Hubble
constant, defined by H0 ” 100h km s´1 Mpc´1.

An ilustrative example of a mock catalog is shown in Figure 3.5. It can be observed
that the distribution is more clustered in some parts than in others, which is expected
due to the formation of structures (in this case, described by the fiducial model assumed,
i.e., the ΛCDM model).

Figure 3.5: Example of a log-normal mock catalog. The points are distributed throughout
the entire sky according to the expected distribution from the concordance model.

With the generated set of mocks, we cut out each of the regions in Figure 3.3 in the
same manner as described in Subsection 3.1.1, i.e., maintaining the footprint and the
number of points in each region5. This resulted in samples such as the one illustrated in
Figure 3.6.

5Due to the nature of the simulation, the number of objects in each realization fluctuates. Therefore,
after the region cutout, we randomly selected objects in an effort to have equivalent quantities to the
data for each region in analysis.
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Figure 3.6: Comparison between a mock catalogue and the data cut corresponding to
Area 1 of the ALFALFA catalog.
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Chapter 4

Statistical methods

In studies involving the large-scale structure of the universe, the use of the two-point cor-
relation function (2PCF) is convenient for quantifying the clustering of matter, in addition
to being subject to interpretation. The three-dimensional version of the 2PCF requires
the assumption of a cosmological model to convert angular coordinates and redshift into
distances (DE CARVALHO, 2019; PEEBLES, 1993). However, we only use measurements
of right ascension (RA or α) and Declination (DEC or δ), and, therefore, our analyses
are independent of a cosmological model. As a result, this work is based on the projected
version of the two-point correlation function, known as the two-point angular correlation
function (2PACF).

4.1 Two-Point Angular Correlation Function (2PACF)

Assuming a collection of N randomly distributed points in a volume V , the probability
of finding a point centered in the infinitesimal volume dV is given by

dP “
N

V
dV “ ndV, (4.1)

where n “ N{V is the number density of points in the region (LIMA NETO, 2022;
PEEBLES, 1993). If there are two objects, the joint probability of finding them in volumes
dV1 and dV2, respectively, is given by

dP “ pndV1qpndV2q “ n2dV1dV2. (4.2)

The Equations (4.1) and (4.2) do not quantify clustering as they are independent of the
distance between objects. In this case, we need to use the two-point correlation function
(ξprq, 2PCF), which is defined by the joint probability of finding an object in both of the

31
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volume elements dV1 and dV2 (PEEBLES, 1981),

dP ” n2
r1 ` ξprqsdV1dV2, (4.3)

with r being the distance between pairs of objects, measured in units of h´1Mpc, and n

representing the mean number density of the sample (COIL, 2013; LIMA NETO, 2022;
PEEBLES, 1993).

The correlation function can also be determined solely based on the projected positions
of objects (RA and DEC). Thus, we have the two-point angular correlation function, (ωpθq

or 2PACF), which is defined similarly to Equation (4.3),

dP ” n2
r1 ` ωpθqsdΩ1dΩ2 , (4.4)

where dΩ is the solid angle element of a cosmic object at an angular separation θ from a
second galaxy. This angular separation is calculated using

θij “ cos´1
rsinpδiq sinpδjq ` cospδiq cospδjq cospαi ´ αjqs, (4.5)

where αi, αj, δi, and δj are the right ascension and declination, respectively, of the objects
i and j.

In practice, the correlation function uses estimators based on counting pairs of objects
as a function of distance. There are several estimators in the literature (DAVIS and
PEEBLES, 1983; HAMILTON, 1993; HEWETT, 1982); the most used are the Peebles-
Hauser estimator (PH; PEEBLES and HAUSER (1974)).

ωPHpθq “
DDpθq

RRpθq
´ 1, (4.6)

and the Landy-Szalay estimator (LS; LANDY and SZALAY (1993)),

ωLSpθq ”
DDpθq ´ 2DRpθq ` RRpθq

RRpθq
, (4.7)

where DDpθq, RRpθq and DRpθq are the number os pairs of cosmic objects normalized
by the total number of pairs as follows:

DDpθq “
ddpθq

rNdpNd ´ 1q{2s
, (4.8)

RRpθq “
rrpθq

rNrpNr ´ 1q{2s
, (4.9)
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DRpθq “
drpθq

NdNr

, (4.10)

where ddpθq is the number of pairs of cosmic objects in the data catalog with angu-
lar separation θ; rrpθq is a similar quantity, but for pairs in the synthetic catalog; and
drpθq corresponds to a cross-correlation between an object in the data and an object
in the synthetic catalog (LANDY and SZALAY, 1993; PEEBLES and HAUSER, 1974;
VARGAS-MAGAÑA et al., 2013).

Three cases are possible for ωpθq:

ωpθq

$

’

&

’

%

ă 0 , segregated distribution (negative correlation)
“ 0 , Poisson distribution (random)
ą 0 , clustered distribution (positive correlation)

(4.11)

The case where ωpθq ă 0 indicates that is less likely to found pairs at a given angular
distance θ, indicating a tendency for objects to be more dispersed or anti-clustered in the
universe. The second one, ωpθq “ 0, suggests no correlation between the cosmic objects at
the given angular separation θ; this indicates a random or uniform distribution of objects,
without any preferential clustering or agglomeration. Lastly, when ωpθq ą 0, the objects
are more likely to be found together in pairs or groups, indicating a clustering of matter
in the sample in analysis. If we have a sample that is homogeneous on large scales, then,
for every interval of the angular scale θ where ωpθq ą 0, there will be a complementary
interval where ωpθq ă 0 (LIMA NETO, 2022).

The most intuitive estimator –in physical terms– is the PH estimator, which directly
compares the count of data pairs and random pairs to unity (PAPASTERGIS, 2013); on
the other hand, although the LS estimator requires more computational time, it exhibits
better statistical performance and is less sensitive to the size of the random catalog (COIL,
2013; KERSCHER et al., 2000).

Unless explicitly stated, in our analyses we calculate the 2PACF using 80 bins linearly
spaced between 0.01˝ and 40˝ for large-scale analyses, and 20 bins in the linear interval
between 0.01˝ and 10˝ for small-scale analyses.

It is expected that the 2PACF behaves according to a power-law function (COIL,
2013; CONNOLLY et al., 2002; KURKI-SUONIO, 2023; MARQUES and BERNUI, 2020;
PEEBLES, 1993; TOTSUJI and KIHARA, 1969). Therefore, after estimating the 2PACF,
we plot the best-fit curve using the Equation

ωpθq “

ˆ

θ

θ0

˙´β

, (4.12)

where the parameter θ0 is the transition parameter between the linear and non-linear
regimes, and the parameter β quantifies the clustering of matter in the analyzed region
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(i.e., the higher the value of this parameter, the closer the galaxies are to each other).

4.2 Estimation of uncertainties

The random catalogs we used to calculate the 2PACF are not considered satisfactory
for estimating the uncertainties associated with the calculation of the 2PACF, leading
to underestimated values (DE CARVALHO et al., 2018; NORBERG et al., 2009). To
overcome this issue, we use the mocks described in Section 3.2.

The procedure followed the description provided by DE CARVALHO et al. (2021);
MYERS et al. (2005); WANG et al. (2013). After calculating the 2PACF for a set of Nb

bins using the 1000 mocks and the 25 pre-generated random catalogs, we computed the
elements of the covariance matrix according to

Covij “
1

N

N
ÿ

k“1

rωkpθiq ´ ωkpθiqsrωkpθjq ´ ωkpθjqs, (4.13)

where the indices i, j “ 1, 2, ..., Nb represent each bin θi; ωk is the 2PACF for the k-th
mock (k “ 1, 2, ..., N); ωpθiq and ωpθjq are the mean values for bins i and j, respectively.
The uncertainty of ωpθiq is the square root of the main diagonal of Equation (4.13),
∆ωpθiq “

?
Covii.

In order to assess the degree of independence between the bins, we calculate the
elements of the correlation matrix using the relationship

Corrij “
Covij

σiσj

, (4.14)

where σi, σj are the standard deviations of bins i, j, respectively (WASSERMAN, 2004).
In Figure 4.1 we show the correlation matrix for 100 log-normal mocks. It is worth

noting that the color scale indicates whether the bins are independent (Corrij “ 0) or
whether increasing bin i causes an increase or decrease in bin j (Corrij “ `1 or Corrij “

´1, respectively).
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Figure 4.1: Correlation matrix for 100 log-normal mocks obtained from Equation (4.14).
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Chapter 5

Results and discussions

With the statistical tools on hands, described in the Chapter 4, we perform the statistical
isotropy analyses on the ALFALFA data. First, we perform the 2PACF analyses for our
sample –carefully fragmented in 10 directions– to probe the Local Universe isotropy. Next,
we discuss the interesting features observed in these 2PACF, like the possible presence
of low-density structures in some analysed regions. We consider small and large angular
analyses in the fitting procedure of the 2PACF; the first one because of the criteria estab-
lished in the literature (WANG et al., 2013), while the second one is due to the intriguing
structures observed, in Figure 5.1, only in some regions at large angles.

5.1 Statistical isotropy analyses with the 2PACF

After some tests we select for analyses 10 regions. For this we divide the ALFALFA
footprint into 10 sky patches of „ 750 deg2 each one, six in the Spring region and four
in the Fall region, as shown in Figure 3.3, with geometric details specified in Table 3.1.
Using the LS estimator, we then calculate the 2PACF, ωpθq, for the range 0˝ ă θ ă 40˝,
with 80 bins, in each sky patch. Then we perform a best-fit procedure assuming a power-
law behavior in the form of Equation (4.12), considering two situations: (i) for small
angular scales θ P r0˝, 10˝s; and (ii) for large angular scales θ P r0˝, 30˝s. The summary of
our 2PACF analyses can be seen in Figure 5.1. Notably, some regions show a dissimilar
2PACF at large-angles, interesting results that deserve close inspection.

Furthermore, the best-fit analyses at small and large scales, θS,L0 and βS,L, deserve
a comment. The analyses for small angles, 0˝ ă θ ă 10˝, provides a measure of non-
linear clustering in the selected 10 sky directions that we compare with 1000 Area-mocks1

produced under the homogeneity and isotropy hypotheses. This comparison is intended
to reveal possible deviations of the best-fit parameters from the 10 ALFALFA regions
with respect to the isotropic mocks, simulated data that take into account the clustering

1That is, 100 mocks where we consider in each one 10 regions with equal footprint as in Figure 3.3.
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Figure 5.1: Mosaic of the 2PACF for large-angle analysis : angular distribution study of
the 10 sky patches in which we divide the ALFALFA footprint. We use the 2PACF with
the LS estimator for a large angular interval, i.e., 0˝ ă θ ă 30˝. See Section 5.2 for a
detailed discussion of the features observed in these 2PACF plots.
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evolution of the low-redshift universe. For small-angle analyses, the median value of the
best-fit parameter βS from these 1000 Area-mocks is βS;SI “ 1.180˘ 0.325, meaning that
the 10 sky regions analysed are compatible with the hypothesis of statistical isotropy (SI)
within 1.4σ CL. This conclusion can also be seen in the histogram shown in Figure 5.2.
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Figure 5.2: Distribution of the best-fit parameter βS from small-angle analyses of 1000
Area-mocks, the median value is βS;SI “ 1.180 ˘ 0.325, meaning that the 10 sky regions
analysed are compatible with the hypothesis of statistical isotropy (SI). The values for the
Areas 2, 9, and 10 are plotted as continuous, dotted, and dashed vertical lines, respectively
(their corresponding β values can be seen in Table 5.1).

From other side, our analysis for large angles, 0˝ ă θ ă 30˝, is intended to reveal
features, or structures, besides the 2D homogeneity scale, θH » 16˝, of the ALFALFA
catalog (AVILA et al., 2018). In this case, the best-fit parameters provides partial in-
formation, as the 2PACF signatures were more revealing. In fact, we observe that the
2PACF of some regions show a consistent lack of large-angle correlations, manifested in
the form of depressions, interesting signatures that motivates us to investigate what could
be causing them (analyses that we perform in the next Subsections).
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Table 5.1: Best-fit parameters considering the power-law relationship: ωpθq “ pθ{θ0q
´β.

We have performed two best-fit analyses, for small angles (i.e., 0˝ ă θ ă 10˝) and for large
angles (i.e., 0˝ ă θ ă 30˝); we differentiate these cases with the superindex letter S or L.
For small angles study the mean for these 10 regions is xβyS “ 1.202˘0.374, according to
this all the βS values shown in the Table below are within 1.3σ CL with respect to xβyS.
For large angles scrutiny the mean for these 10 regions is xβyL “ 1.498˘ 0.271, according
to this all the βL values are within 1.4σ CL with respect to xβyL. The comparison of the
2PACF from the 10 regions, displayed in Figure 5.1, suggests further analyses that we
perform in the Subsection 5.2.

θS0 [degrees] βS θL0 [degrees] βL

Area 1 0.299 2.004 0.304 2.059
Area 2 0.181 0.848 0.295 1.209
Area 3 0.259 1.249 0.312 1.649
Area 4 0.256 1.384 0.289 1.634
Area 5 0.197 1.031 0.265 1.349
Area 6 0.235 1.286 0.276 1.551
Area 7 0.252 1.174 0.311 1.601
Area 8 0.263 1.468 0.282 1.609
Area 9 0.258 0.851 0.280 1.063
Area 10 0.201 0.727 0.318 1.253

5.2 Sky patches with intriguing features

According to the literature (KEENAN et al., 2013), the Area 2 partially shares the region
of the sky where the projected Local Cosmic Void (LCV) is located. This turns the Area 2
an interesting arena to assess, with diverse statistical methodologies, the possible imprints
left by the LCV in our analyses. We also notice that Area 9 and Area 10 show a 2PACF
similar to Area 2 (see Figure 5.1), a fact that may indicate that these two regions also
have features suggestive of the presence of projected cosmic voids, like Area 2 does.

Let us concentrate first on the study of Area 2, where we observe features that can be
a signature of the presence of the projected LCV there.

• First, we notice that the Area 2 overlaps the sky region where diverse astronomical
studies have reported or a huge low-density region (KEENAN et al., 2013) or the
LCV (TULLY et al., 2019). An underdense region, also referred as a low-density
region, is a spatial region characterized by a density contrast δ ă 0, which means
less matter content inside that volume with respect to the density measured in a
largest volume. Moreover, we also notice that the Areas 9 and 10 are close to the
sky location where the Dipole Repeller was detected (HOFFMAN et al., 2017).

• From the 2PACF studies, as shown in the plots of Figure 5.1, one immediately
notices that the Area 2 (but not only) exhibits a consistent lack of correlations over a
large angle range. This feature indicates, as we shall prove in a separate Subsection,
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that this sky region is, indeed, underdense. For this reason, we find interesting to
study in more detail the angular correlations in the Area 2 with the PH and LS
estimators, with the first one being more intuitive to reveal voids than the second
one. Interestingly, this signature is also noticed in the 2PACF of Areas 9 and 10.

• A toy-model simulation, described in detail in the next Subsection, shows that the
signature observed in Area 2 (a close inspection shows the same signature also in
Areas 9 and 10) is well represented by a void region of „ 9˝ of radius and with
density contrast δ » ´0.7, which means 30% less objects content with respect to
the density measured in a largest volume (or respect to a density measured far from
this region; see, e.g., KEENAN et al. (2013)). In other words, underdense regions
or voids projected on the sky produce, indeed, the signature observed in the 2PACF
shown in Area 2.

• The Cumulative Distribution Function on the Area 2 provides important comple-
mentary information regarding the geometry of 3D voids projected on the sky, for
this, this analysis will be discussed in a next Subsection.

All these evidences together strongly suggest that Areas 2, 9, and 10 overlap 3D pro-
jected regions with prevalence of voids. In fact, while Area 2 is next to the LCV (KEENAN
et al., 2013; TULLY et al., 2019), the literature reports that Areas 9 and 10 are close to the
underdense region termed the Dipole Repeller (HOFFMAN et al., 2017). In the following
Subsections we discuss in detail these evidences.

5.2.1 Cumulative Distribution Function

One can investigate whether the feature found in Area 2 corresponds indeed to a projection
of a series of small voids along the line-of-sight. For this aim, we also use the distance
information available in the ALFALFA catalogue. The distance distribution of the sample
corresponding to Area 2 is shown in Figure 5.32.

We determine the cumulative distribution function (CDF), which is defined as the
probability that a random variable X has a value less than or equal to x in the interval
FX : IR Ñ r0, 1s (WASSERMAN, 2004),

FXpxq “ IPpX ď xq. (5.1)

The theoretical curve is calculated for a Gaussian distribution with probability density

2Note that there is the possibility that the ALFALFA survey may not have detected all the low-
luminosity sources present in the Local Universe due to the luminosity threshold of the instrument.
However, in this respect, we are considering that the observational scheme of the ALFALFA survey was
planned to avoid, or minimize, this possibility.
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Figure 5.3: Distance distribution histogram of the ALFALFA sample used in the analy-
ses. The distance information is used in the calculation of the Cumulative Distribution
Functions (see the Subsection 5.2.1).

function (PDF) defined as

P pxq “
1

σ
?
2π

exp

„

´
1

2

´x ´ µ

σ

¯2
ȷ

, (5.2)

where σ is the standard deviation and µ is the mean of the distribution of the variable x,
that, in our case, are the distances of the cosmic objects (BEVINGTON and ROBINSON,
2003).

We plot the theoretical CDF considering the basic features of the data in analysis
and compute, and plot together, the CDF for the Area 2 data set (see Figure 5.4). The
theoretical CDF was plotted using 44 bins, and has mean µ “ 116 Mpc, and standard
deviation σ “ 56 Mpc. Examining both CDFs, from data in Area 2 and the theoretical
one, shown in Figure 5.4, one clearly observes two depressions suggestive of underdense
regions: one not so large around r P r100, 140s Mpc and the other is larger and deeper at
r P r160, 245s Mpc. Due to the proximity of these depressions, and moreover, from the
analyses of really of MOORMAN et al. (2014), the voids network may indeed interconnect
small and medium size voids that can be interpreted as a very large void. Therefore, we
conclude that the void structure projected onto Area 2 has the approximate location
100Mpc À r À 240Mpc, which corresponds to an underdense region of „ 140 Mpc in
length, and width of the order of 60 Mpc.
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Figure 5.4: Analysis of the Areas 2, 9, and 10 with the Cumulative Distribution Func-
tion. Left Panel, Area 2: This function shows clearly two depressions suggestive of
underdense regions: one not so large around r P r100, 140s Mpc and the other is larger
and deeper at r P r160, 240s Mpc. Due to the proximity of these depressions, and more-
over, as suggested by the analyses of MOORMAN et al. (2014), the voids network may
interconnect small and medium size voids that can be interpreted as a very large void.
Therefore, we conclude that the void structure projected onto Area 2 has an approximate
length of 100Mpc À r À 240Mpc, which corresponds to an underdense region with size
around 140 Mpc, and width of the order of 60 Mpc. Midle Panel, Area 9: Similarly,
there is one depression around r P r40, 90s Mpc, and another around r P r140, 190s Mpc.
Right Panel, Area 10: This plot shows one deep depression around r P r130, 180s Mpc.
In all cases the theoretical CDF was plotted using 44 bins, with mean µ “ 116 Mpc and
standard deviation σ “ 56.

Our results are compatible with the analyses done by MOORMAN et al. (2014), who
studied the underdensity regions of the ALFALFA data in more detail (c.f. Figure 1
therein). The CDF of Area 2 shows the presence of distance intervals where there are
fewer objects than expected when comparing with the Gaussian curve of Equation (5.2)
and that, in fact, it would not correspond to a single giant void, but to some contiguous
and (probably) connected smaller voids.

5.3 LS versus PH

We have commented above that the PH estimator is more intuitive than the LS estimator
in the description of regions with clustered matter and voids. This happens due to the
direct comparison between the ratio of data pairs and random pairs with unity, and this
feature shall be tested in the following toy-model simulation.

As commented above, the sky region named Area 2 shares in part the region containing
the projected LCV (KEENAN et al., 2013), and this fact might be correlated with the
signature of a large depression –although not so deep in the LS 2PACF– observed in the
plot of the Area 2 in Figure 5.1. Our intention is to investigate whether this feature is a
possible signature of the LCV.

Consider a simulated sky region with the same features as the Area 2, that is, same
angular scale dimensions and number of cosmic objects therein. Remove 30% of objects
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Figure 5.5: Left panel: Cartesian projection of the Spring sky region named Area 2,
containing 2081 cosmic sources in an area of „ 756 deg2. Right panel: 2PACF using
the PH estimator for the data in Area 2.

located inside a disc of 9˝ of radius3 and redistribute these objects uniformly outside the
disc. Our results can be observed in Figure 5.6 where we show the original region with
uniformly distributed data and the region after one removes 30% of objects from a 9˝

of radius disc. Now we perform the 2PACF for the simulated void catalog using both
estimators, i.e., PH and LS. The curves can be seen in Figure 5.7.
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Figure 5.6: Toy-model experiment, simulating a void region with δ “ ´0.7: Area 2
simulated region with 2081 uniformly distributed objects (left panel), and the same region
but with 30% of the cosmic objects removed from a disc of 9˝ and distributed randomly
outside the disc (right panel).

From the results observed in Figure 5.7, we conclude that a void characterized with

3The location of the disc centre that simulates the artificial void is not relevant because for the 2PACF
what matters is the distance between pairs.
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Figure 5.7: 2PACF analyses for a toy-model simulation, where an artificial void, with
δ “ ´0.7 and radius of 9˝, was produced to compare the descriptions of it given by the
PH (left panel) and the LS (right panel) estimators.

number density contrast δ “ ´0.7 can be clearly detected with the 2PACF-PH estimator
but not with the 2PACF-LS estimator. The large depression signature observed in the
2PACF of Area 2, shown in Figure 5.1, is indeed the signature of a large underdense
region, therefore our analyses confirm the presence of (part of) the projected LCV in the
Area 2 (KEENAN et al., 2013; TULLY et al., 2019). As this underdense-region signature
is also observed in the 2PACF of Areas 9 and 10, we are led to conclude that the 2PACF
also manifest a large underdense region projected there, and due to its proximity it is
very likely that this void structure is (part of) the projected Dipole Repeller (HOFFMAN
et al., 2017). Figure 5.8 illustrates the approximate position, but not the true extension,
of these underdensity regions.

5.4 Robustness, consistency, and null tests

To probe the statistical isotropy of the Local Universe, and to give support to our findings,
we elaborate a series of sensitivity and robustness tests. Some of them were introduced
along the text, like the toy-model simulation, for instance. In this Section we test a
random catalog to verify that it does not produce any signature in the 2PACF; our result
can be observed in Figure 5.9.

Moreover, for small-angle analyses we analyse the best-fit parameter βS from a set
of 1000 Area-mocks, produced under the statistical isotropy hypothesis, to compute the
statistical significance of the parameter βS obtained from the 10 regions in analysis dis-
played in Table 5.1. The distribution of βS-values shown in Figure 5.10 shows that
βS;SI “ 1.180˘0.325. In consequence, this result lead us to conclude that for small-angle
analyses the 10 regions in which we divided the ALFALFA footprint are statistically
isotropic within 1.4σ CL.
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Figure 5.8: The ALFALFA footprint in Galactic coordinates. The enclosed lines show,
illustratively, the regions containing the projected underdense regions that could have left
imprints in the data sample analysed. The horizontal lines, „ 15˝ above and below the
equator, represent the zone of avoidance, that is, the sky region where visible light is
obscured by the Milky Way plane. The center of the picture corresponds to the galactic
centre, and above and below the equator one has the NGH and SGH, respectively. The
small (violet) triangle denotes the approximate position of the Dipole Repeller (HOFF-
MAN et al., 2017).
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Figure 5.9: Null test for the random dataset. We perform the 2PACF analysis considering
one random catalogue as a pseudo data catalogue. As observed, the 2PACF evidences no
signature, just statistical fluctuations.
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Figure 5.10: Mosaic of the 2PACF for small-angle analysis : angular distribution study of
the 10 sky patches in which we divided the ALFALFA footprint, using the 2PACF with
the LS estimator for the small angular interval, i.e., 0˝ ă θ ă 10˝.



Chapter 6

Conclusions

This dissertation conducted independent model analyses to study the statistical isotropy
in the Local Universe (LU) using data from the ALFALFA catalog (z ă 0.06). Given the
significance of the Cosmological Principle (CP) for the concordance model, testing and
validating isotropy is of recognized importance in the scientific community.

The application of the CP to the LU is another crucial point, as the LU, despite
being close to us, is difficult to observe due to the presence of the Milky Way disc, which
hinders the observation of extragalactic objects in the visible range of the electromagnetic
spectrum. On the other hand, there is a large area mapped by astronomical surveys, with
observed region in opposite Galactic hemispheres that can be investigated.

In this work, we investigated the angular distribution of the HI cosmological tracer,
which provided us with information about matter and void structures in the LU. For
this purpose, we selected data classified as Code 1 - considered to be „ 100% reliable
according to the ALFALFA team - and divided our final sample into ten approximately
750 deg2 areas. This division needed to be done in such a way that each region was not too
large –which would reduce the available data for analysis– nor too small with low number
density. We adopted the criterion of the homogeneity scale (with a value of θH » 20˝

when the matter bias is b » 1). Furthermore, each patch was carefully delineated to
avoid the presence of irregular shapes that could hinder the reproduction of each region
as synthetic catalogs.

Our statistical analyses were performed using the Landy-Szalay estimator of the two-
point angular correlation function in each of the ten regions. With this, we investigated
the behavior of the ALFALFA angular distribution and compared it to what would be
expected for a 2PACF obtained under the assumption of homogeneity and isotropy. Our
results are summarized in Table 5.1 and Figures 5.1 and 5.10. Thanks to recent efforts
dedicated to investigating the structures in the LU, today we have knowledge about the
spatial distribution of clustered matter and voids. This valuable information provides a
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reasonable explanation for the intriguing behavior observed in the 2PACF.

Our results at small scales (Figure 5.10) served to obtain the fitting parameter β, which
is necessary to quantify the level of isotropy in our samples. By comparing the values from
the ten regions, we found that the median of the β distribution was βs “ 1.180 ˘ 0.325,
leading us to conclude that there is compatibility with statistical isotropy within 1.4σ CL.

However, as we increase the considered scale size, we found intriguing peculiarities
in some regions, as illustrated in Figure 5.1. In particular, Areas 2, 9, and 10 exhibit a
significant depression indicative of the presence of a large underdensity - or a collection
of subdensities - that may have a common origin in a void with a density contrast of
δ » ´0.7, as discussed in Chapter 5. Areas 9 and 10, for example, are very close to the
location of the Dipole Repeller. Focusing on Area 2, we found that it overlaps with the
location where several previous studies have reported the presence of a Local Cosmic Void.
We also applied the PH estimator to our data to compare the behavior of the obtained
curves, because the PH estimator is more intuitive, and it better highlights the presence
of underdensities and overdensities, contrary to what occurs with the LS estimator. The
presence of an underdensity in this region was tested through a toy-model experiment,
which showed that Area 2 is well-sourced by a void region of 9˝ and with a density contrast
of δ » ´0.7.

Finally, we complemented our tests using the cumulative distribution function and
compared the distance intervals where empirical values remained below the theoretical
expectation with the possible positions of voids found by MOORMAN et al. (2014).
Thus, we conclude that the void structure projected onto Area 2 has the approximate
location 100Mpc À r À 245Mpc, which corresponds to an underdense region of „ 150

Mpc in lenght, and width of the order of 60 Mpc, and agrees well with the literature.
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Appendix A

Toy-model simulation of the cumulative
distribution function

In order to verify the validity of the results shown in Figure 5.4, a similar robustness test
to the simulated void described in Section 5.3 was performed. Utilizing the distance data
provided by ALFALFA, we removed a percentage of the data (30%) from intervals of 51
Mpc and generated the same amount with new randomly determined values that are not
within the removed interval. Based on this procedure, we arrived at the results presented
in Figure A.1.

Figure A.1: Toy-model experiment, simulating a void region in three scenarios: (i) data
removal in the interval 51 ´ 102 Mpc; (ii) data removal in the interval 102 ´ 153 Mpc;
(iii) data removal in the interval 153 ´ 204 Mpc
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