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Rayff de Souza

COSMOLOGICAL AND PARTICLE PHYSICS IMPLICATIONS OF A
NON-MINIMAL RADIATIVE HIGGS INFLATION

RESUMO

Neste trabalho, exploramos aspectos de um modelo de Inflação Não-Mínima de Higgs,
onde correções radiativas são incluídas a partir da aproximação de Coleman-Weinberg.
Por meio de uma análise MCMC, vinculamos o parâmetro que quantifica as correções
quânticas ao potencial inflacionário com dados cosmológicos para uma série de valores
do número de e-folds da inflação. Além disso, fazemos uma análise geral do período
de reaquecimento, a fim de estipular um limite superior para a expansão inflacionária do
Universo. A fim de melhor compreender os efeitos do cenário proposto em baixas energias,
relacionamos nossos vínculos em cima do parâmetro radiativo com medições de física de
partículas na escala eletrofraca, por meio das Equações do Grupo de Renormalização, nos
permitindo estimar um limite para a massa do top quark. Por fim, investigamos a quebra
da correlação entre a constante de Hubble H0 e o parâmetro de clustering σ8, o que torna
o modelo interessante mediante as tensões cosmológicas discutidas na última década.
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Rayff de Souza

COSMOLOGICAL AND PARTICLE PHYSICS IMPLICATIONS OF A
NON-MINIMAL RADIATIVE HIGGS INFLATION

ABSTRACT

In this work, we explore aspects of a Non-Minimal Higgs Inflation model, where ra-
diative corrections are included in the Coleman-Weinberg approximation. By means of a
MCMC analysis, we constrain the parameter that quantifies the quantum corrections to
the potential with cosmological data for a range of the inflationary e-fold number. Also,
we perform a general analysis of the reheating stage, in order to estimate an upper limit
to the inflationary expansion. In the interest of better understanding the effects of the
proposed scenario at low energies, we relate our constraints in the radiative parameter
with particle physics measurements at the electroweak scale, via the Renormalization
Group Equations, which allows us to estimate a limit to the top quark mass. Finally, we
investigate the breaking of the correlation between the Hubble constant H0 and the clus-
tering parameter σ8, rendering the model interesting in light of the cosmological tensions
discussed in the last decade.
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Introduction

Cosmology is the study of the Universe as a whole, from the smallest to the largest
scales of time, space and energy. In 1915, the formulation of the General Theory of Rela-
tivity (GR), by Albert Einstein [Einstein, 1915], provided us with an interpretation of the
large-scale structure as a dynamic space-time, with its evolution dictated by its matter
and energy content. The early thinking of the pioneers of relativistic Cosmology, includ-
ing Einstein, was that a sensible Universe would look the same everywhere and in all
directions, apart from small irregularities in concentrations of stars and planets [Peebles,
2020]. This blossomed into the formulation of the Cosmological Principle, which states
that the Universe at cosmological scales should be homogeneous (translational symmetry)
and isotropic (rotational symmetry). Early evidences of homogeneity and isotropy already
appeared in the 1930s, according to the mapping of galaxy counts in the sky [Hubble,
1934].

In 1922, Alexander Friedmann demonstrated the possibility of an expanding Universe
emerging from Einstein’s equations [Friedmann, 1922], which was supported by Edwin
Hubble’s observation of a receding motion of nearby galaxies [Hubble, 1929]. Extrapolat-
ing the expansion back in time, we can infer that the current Universe must have evolved
from an initial state of extremely high temperature and density, composed of a plasma of
different particle species. That marks the beginning of the Hot Big Bang theory.

Throughout the last century, the Big Bang model of the Universe has been constantly
supported by cosmological observations. Namely, the predictions for the abundances of
light elements produced during Big Bang Nucleosynthesis (BBN), the observation of the
near blackbody spectrum of the Cosmic Microwave Background radiation and the dis-
tribution of large-scale structure have all been central pillars of Big Bang Cosmology
[Baumann, 2022]. However, the theory does not come without its shortcomings.

From the theoretical perspective, the near homogeneity of the Last Scattering Surface
(LSS), the flatness of the spatial geometry of the Universe and the absence of unwanted
cosmic relics were relentless puzzles of the last century that did not have a dynamical
explanation on the basis of the Hot Big Bang. That motivated, in the early 1980s, the
proposal of an early period of accelerated expansion, called Cosmological Inflation [Guth,
1981, Starobinsky, 1980]. After this epoch, the Universe would enter the reheating stage,
where the known particle species are produced and the standard Big Bang evolution would
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follow. However, the nature of the physical entities that might have taken place during
inflation and reheating are not yet fully understood. This work attempts to shed some
light on the possibilities regarding those scenarios.

On the observational front, the current concordance model of Cosmology, the ΛCDM
was established in the early 2000s, after the discovery of the present-day cosmic accel-
eration [Riess et al., 1998]. Despite being the most successful cosmological model up to
date, recent observations have raised important statistical tensions between some of the
relevant parameters of the model [Verde et al., 2019].

In parallel to the many developments of Cosmology in the last century, another branch
of modern physics was also the stage of some of the most incredible advances of science.
The invention of Quantum Field Theory and Gauge Theories allowed for the establish-
ment of the Standard Model of Particle Physics (SM), the most accurate physical theory
ever created [Pais, 1986]. Recently, the discovery of the Higgs boson [Chatrchyan et al.,
2012], the only scalar particle in the model, marked an important milestone for the SM,
while also opening the door for many scientific endeavors for the road ahead.

That said, although this work is primarily concerned with Cosmology, we are interested
in developing methods of connecting this branch of science with the study of Elementary
Particles. Our method of connecting these areas - among many possibilities - comes from
a simple but tempting hypothesis: Could the Standard Model Higgs boson have driven
cosmic inflation ? That is a question that has been addressed by many others [Bezrukov
and Shaposhnikov, 2008] and is still an active topic of research. The main challenge is,
perhaps, satisfying the stringent constraints from both inflationary criteria and low-energy
particle physics.

Thus, this work is organized as follows. In Chapter 1 we review the basics of relativistic
Cosmology and the paradigm of inflation. In particular, we highlight the scalar field dy-
namics of the inflationary expansion and how it can be constrained by CMB observations,
as well as some general features of the reheating stage. We end by discussing the current
concordance model of Cosmology, the ΛCDM, along with its ongoing observational ten-
sions. Chapter 2 is concerned with properties of the Higgs field. First, we discuss the role
of the Higgs in the SM, namely the spontaneous symmetry breaking mechanism and the
generation of masses for fermions and massive gauge bosons. Then, we focus on recent
proposals of elevating the Higgs boson to the status of inflaton, through a non-minimal
coupling with gravity. In Chapter 3 we employ the tools developed in the previous Chap-
ters to the non-minimal Higgs inflation with radiative corrections. We motivate the form
of the quantum corrections included in the inflationary potential, and analyse how it fits
current CMB data. By exploring the reheating stage, we are able to derive an upper limit
to the amount of expansion during inflation. Then, we conclude by discussing our two
main results. First, we relate our assessment of the radiative corrections to the Higgs
potential to the electroweak scale by means of the Renormalization Group Equation, al-



3

lowing us to estimate an upper limit for the top quark mass. At last, we discuss the
results of the MCMC analysis in which a breaking of the correlation between the Hubble
constant H0 and the clustering parameter σ8, both important parameters of ΛCDM, is
found.



Chapter 1

The Standard Model of Cosmology

Among the four fundamental forces of Nature, the one that primarily concerns the field
of Cosmology is the gravitational interaction. We have confidence that the Universe is, in
average, electrically neutral, so electromagnetism does not play a major role. Since the
weak and strong nuclear interactions are short-ranged, that leaves, in principle, gravity
to explain all of the dynamics of large-scale structure.

As mentioned, the modern formulation of gravity is based on the General Theory of
Relativity of Albert Einstein [Einstein, 1915]. Even though it has passed several tests
from within the solar system up to cosmological scales, we know that it is not the final
theory of gravity, given that it still lacks a high energy completion, where quantum effects
become important. Therefore, GR can be treated as an effective theory for energies below
the Planck scale, providing an accurate description of gravity for most of our cosmological
purposes. The theory expresses the dynamics of space-time geometry, captured by the
metric tensor gµν , in response to its matter and energy content, given by the energy-
momentum tensor, Tµν . We can represent it mathematically by writing the Einstein-
Hilbert action:

S “
M2

P

2

ż

d4x
?

´gR . (1.1)

Here, g is the determinant of the metric tensor, MP “ p8πGq´1{2 is the reduced Planck
mass and R is the Ricci or curvature scalar, which contains up to second order derivatives
of the metric. The Einstein equations can be derived by applying the action principle to
(1.1):

Rµν ´
1

2
Rgµν “ M´2

P Tµν , (1.2)

where the Ricci tensor Rµν is also related to the metric. Cosmology enters the above equa-
tion when one proposes an appropriate ansatz for the geometry and energy-momentum
content of space-time, which can be done by means of symmetry arguments, i.e. the
Cosmological Principle. At large scales (Á 100 Mpc), the Universe appears to be ho-
mogeneous and isotropic, which is consistent with the use of the Friedmann-Lemaitre-

4



5

Robertson-Walker (FLRW) metric in the left-hand side of (1.2):

ds2 “ gµνdx
µdxν

“ ´dt2 ` a2ptq

„

dr2

1 ´ kr2
` r2pdθ2 ` sin2 θdϕ2

q

ȷ

. (1.3)

Note that the spatial part of the metric is multiplied by an overall scale factor, aptq. The
constant k refers to the spatial curvature of the metric, and it assumes the values of 0, 1
or ´1 for a flat, closed and open Universe, respectively.

Accordingly, the right-hand side of (1.2) should also exhibit the properties of homo-
geneity and isotropy, which is the case if we take the energy-momentum tensor of the
Universe to be of the perfect-fluid type:

Tµν “ pρ ` pquµuν
` pgµν , (1.4)

where ρ, p and uµ are the fluid’s energy density, pressure and four-velocity, respectively.
Therefore, inserting (1.3) and (1.4) into the Einstein equations (1.2), the 00 component

yields:

H2
ptq “

1

3M2
P

ρptq ´
k

a2
. (1.5)

Equation (1.5) is called the Friedmann equation, the dynamical equation for the cosmo-
logical background. At any given moment in cosmic time, the behaviour of the Universe’s
expansion rate, captured by the Hubble parameter H ” 9a

a
, is given by the overall energy

density of all the combined fluid species in the Universe, ρ “
ř

i ρi.
The ij components of Einstein equations, combined with the Friedmann equation,

yield the acceleration equation, which captures the variation of the expansion rate:

:a

a
“ ´

1

6M2
P

pρ ` 3pq . (1.6)

In addition to the Einstein equations, we can impose the general relativistic conserva-
tion condition ∇µT

µν “ 0, with the ansatz (1.3) and (1.4):

9ρ ` 3Hpρ ` pq “ 0 . (1.7)

We have now three equations for the three variables aptq, ρptq and pptq. However, only two
of them are independent, given that (1.5) was used in the derivation of (1.6). Therefore,
in order to close the system of equations, we can use a fluid equation of state, relating its
pressure to the energy density:

p “ wρ , (1.8)

with w being the dimensionless equation of state parameter, which depends on the fluid
constituent. For instance, wm “ 0 for ordinary and dark matter, wr “ 1{3 for radiation
and wΛ “ ´1 for a cosmological constant. If one inserts (1.8) into (1.7), we get ρ9a´3p1`wq.
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We can use substitute this result into the Friedmann equation (1.5) in order to find the
evolution of the scale factor for a spatially flat Universe dominated by a component with
equation of state parameter w:

aptq9

$

&

%

t
2

3p1`wq , w ‰ ´1

eHt, w “ ´1 .
(1.9)

In the interest of estimating the energy density of the various components of the
Universe, it is useful to introduce a more natural scale of ρ. This is done by defining
the critical density: ρc ” 3H2M2

P , corresponding to the energy density required for the
Universe to be spatially flat. Now, for each component, we define the density parameter:
Ωi ”

ρi
ρc

9a´3p1`wq

ρc
. Thus, we can write the Friedmann equation in terms of Ωi as

H2
paq “ H2

0

«

ÿ

i

Ωia
´3p1`wiq ` Ωka

´2

ff

, (1.10)

where the density parameters are now evaluated at the present time.
The above equations form the basis for the dynamical description of the expanding

cosmological background. For a Universe composed of ordinary matter and radiation,
the pioneers of relativistic Cosmology hoped to be able to fully describe the cosmic past
and its future. The issue is that, contrary to what was expected, observations and non-
empirical assessments pointed to the existence of exotic components of the cosmos, as
well as non-trivial expansion periods.

1.1 The Inflationary Paradigm

As already known in the early days of relativistic Cosmology, a Universe with an initial
singularity some finite time in the past, dominated by radiation and matter, has a finite
particle horizon. Among other consequences, it means that a light signal could only have
traveled so far from the singularity to a given moment in cosmic history, and this maximum
distance defines the causal horizon of a given observer. As discussed previously, current
large-scale observations are consistent with the picture of a Universe which was highly
homogeneous and isotropic at initial times. It turns out that, on the basis of the causal
structure of standard FLRW Cosmology, the primordial Universe was composed of at
least „ 1083 causally disconnected regions [Guth, 1981], which could not have established
causal contact and hence could not have attained thermal equilibrium. Therefore, the
puzzle of a highly homogeneous early Universe is called the horizon problem of standard
Big Bang Cosmology.

Our modern understanding of this issue is most commonly addressed in terms of the
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near homogeneity of the CMB. The maximum distance that an observer can establish
causal contact at a given time in an expanding Universe is given by the comoving Hubble
scale1 paHq´1. The comoving particle horizon is obtained by the logarithmic integration
of this quantity throughout cosmic history [Baumann, 2022]:

dhpηq “

ż ln a

ln ai

paHq
´1d ln a , (1.11)

with η being the conformal time coordinate, related to the cosmic time according to
dη “ dt

aptq
. In standard FLRW Cosmology, the integral (1.11) is dominated by contribu-

tions of paHq´1 from late times, so that the particle horizon is approximately the same
as the Hubble horizon.

It is important to distinguish between the causal interpretation of the comoving Hubble
radius paHq´1 and the comoving particle horizon dh. If regions are separated by distances
greater than the comoving Hubble scale, they cannot be on causal contact now 2. How-
ever, if they are separated by distances greater than the particle horizon, then they could
have never communicated with one another. In standard FLRW Cosmology, paHq´1 is
a monotonically increasing function, so that regions entering causal contact right now
could have never communicated with each other in the past. In fact, we see patches of
the CMB distribution, separated on scales larger than each others Hubble horizon, that
display near thermal equilibrium. Therefore, these regions could not have been at causal
contact during last-scattering, or at any past time. Also, these scales appear to be cor-
related, as measured in the statistical properties of the CMB temperature anisotropies.
Thus, the horizon problem can be comprehended as an interplay between the concepts of
the Hubble and particle horizons.

In addition, it appeared in 1970 that the overall energy density of the Universe was
very close to the critical density [Hawking and Israel, 2010], which implied that our spatial
geometry is approximately flat. The issue with this conjecture is that an |Ωk| very close to
zero implies an initial curvature parameter fine-tuned to several orders of magnitude, since
|Ωk| is a monotonically increasing function in standard Big Bang Cosmology. Therefore,
basically any deviation from |Ωk| “ 0 would produce a larger present-day curvature. This
is called the flatness problem and, together with the horizon problem3, produced serious
doubts regarding the predictive character of the Big Bang theory.

A solution was put forth in the early 1980s, by Alan Guth [Guth, 1981] and Alexei
Starobinsky [Starobinsky, 1980], independently. In light of the causality issues arising
from the growing character of the comoving Hubble sphere in standard FLRW Cosmol-

1Often called (comoving) Hubble radius or (comoving) Hubble horizon.
2Specifically, particles outside of the comoving Hubble sphere cannot make causal contact during a

characteristic expansion time H´1.
3The absence of magnetic monopoles and other relics are together called the monopole problem by

some authors [Baumann, 2012].
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ogy, one can stipulate a period of a decreasing Hubble radius prior to the Hot Big Bang,
called Cosmological Inflation4. Accordingly, we can impose that regions that are outside of
the Hubble horizon in the CMB at last-scattering, were in fact inside the horizon at some
point during inflation, in which they had time to establish causal contact and achieve
thermal equilibrium. These scales leave the shrinking Hubble sphere during inflation,
only to re-enter the growing horizon at later times, during standard FLRW evolution. A
schematic picture of this mechanism is depicted in Figure 1.1.

Since the particle horizon dh is the logarithmic integral of the comoving Hubble radius

Figure 1.1: Illustration of the way inflation solves the problem of superhorizon correla-
tions. One can see that a given perturbation with characteristic wavelength λ was outside
the horizon at the moment of CMB decoupling, but was inside the horizon at some point
during inflation [Baumann, 2022].

- see (1.11) - the particle horizon continues to grow during inflation, despite a decreas-
ing paHq´1. Therefore, the inflationary expansion is a mechanism of making the particle
horizon much larger than the comoving Hubble scale, so that regions cannot communicate
today but were in causal contact early on, contrary to what was predicted by the Hot Big
Bang.

The flatness problem can also be conveniently solved in inflation as a consequence of
a shrinking Hubble sphere. Since the curvature parameter is written as |Ωk| “ 1

paHq2
,

it is driven to zero during the inflationary expansion, so that |Ωk| “ 0 is an attractor
independently of its initial value. Even considering the growth of Ωk in the standard
FLRW evolution, if inflation lasts long enough, we can safely satisfy Planck’s constraints
of |Ωk| ă 0.005 [Aghanim et al., 2020a].

Inflation is most commonly - and equivalently - defined as a period of accelerated
4Following the reasoning of [Baumann, 2022], we prefer to use a period of a shrinking Hubble sphere

as the very definition of inflation, since it relates more directly to the horizon problem and the generation
of correlated cosmological fluctuations.
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expansion in the very early Universe. One can see that it follows directly from the re-
quirement of a decreasing Hubble radius:

d

dt
paHq

´1
“

d

dt
9a´1

“ ´
:a

9a2
,

d

dt
paHq

´1
ă 0 ùñ :a ą 0 .

(1.12)

Although spacetime expands rapidly during inflation, all physical quantities are said
to be slowly varying. One can see this by rewriting expression (1.12) as

d

dt
paHq

´1
“ ´

9aH ` 9Ha

paHq2
“ ´

1

a
p1 ´ εq,

ε ” ´
9H

H2
,

(1.13)

where ε is called the slow-roll parameter. Thus, we see that a decreasing Hubble radius
BtpaHq´1 ă 0 is associated with ε ă 1. If we take the limit in which ε Ñ 0, we find that

ε Ñ 0 ùñ 9H « 0

ùñ H « const

ùñ aptq9eHt .

(1.14)

Thus, inflation is usually formulated as an expansion around a quasi-de Sitter spacetime,
in which the Hubble parameter is almost constant (slowly varying) and the expansion is
quasi-exponential5. From (1.9), we can see that the exponential expansion is associated
with a dominant component with w “ ´1.

One can wonder how much inflation is needed in order to solve the horizon and flatness
problems. Of course, as mentioned, we at least require that the largest observed scales
on the CMB were inside the Hubble horizon at some point during inflation. A more
general way to estimate the duration of the inflationary expansion is to require the whole
observable Universe (the comoving Hubble sphere today) to be smaller than the Hubble
horizon at the beginning of inflation:

pa0H0q
´1

ă paiHiq
´1 . (1.15)

Since the Hubble parameter stays approximately constant during inflation, Hi « Hend,
the amount by which the comoving Hubble radius decreases is equal to the amount by
which the scale factor increases. Therefore, we can quantify the inflationary expansion

5One cannot set ε “ 0 because inflation has to end some time, so the expansion cannot be exactly de
Sitter.
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according to the number of e-folds:

Ninf ” ln
aend
ai

. (1.16)

The total number of e-folds depends on the energy scale of inflation and details about the
reheating process, which marks the transition between inflation and the Hot Big Bang
(see Section 1.1.3).

1.1.1 The Slow-Roll Mechanism

For the purpose of further investigating the dynamics of the inflationary expansion, we
have to specify the dominant component of the Universe during inflation, which sources
the evolution of the quasi-de Sitter background. Perhaps the simplest proposal to achieve
an expansion of such type is to consider the existence of a scalar field ϕpt,xq in the early
Universe, called the inflaton. The general action for a scalar field in curved spacetime is
given by:

S “

ż

d4x
?

´g

„

M2
P

2
R ´

1

2
BµϕB

µϕ ´ V pϕq

ȷ

, (1.17)

where the second and third terms are the inflaton’s kinetic and potential energy, respec-
tively. To check weather a field of such type can give rise to an inflationary Universe,
we assume a fluid interpretation of the field condensate. This can be done by obtaining
the energy-momentum tensor Tµν for the inflaton fluid. Under a variation of (1.17) with
respect to the inverse metric, the action changes as

δS “ ´
1

2

ż

d4x
?

´gTµνδg
µν

Tµν “ BµϕBνϕ ´ gµν

ˆ

1

2
BαϕB

αϕ ` V pϕq

˙

.

(1.18)

Comparing with (1.4), we find that the energy density and pressure, as well as the equation
of state parameter, for the inflaton are:

ρ “
1

2
9ϕ2

` V pϕq

p “
1

2
9ϕ2

´ V pϕq

w “
p

ρ
“

1
2

9ϕ2 ´ V pϕq

1
2

9ϕ2 ` V pϕq
.

(1.19)

The condition w “ ´1 can be satisfied if the inflaton’s potential energy dominates over
its kinetic energy. Therefore, by making V pϕq " 1

2
9ϕ2 in (1.19) we obtain w « ´1, which

causes the cosmic background to accelerate while dominated by ϕ.
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The set of dynamical equations for the inflationary background are the Friedmann
equation (1.5) with ρ given by (1.19) and the Klein-Gordon equation, derived by conser-
vation of the energy-momentum tensor, ∇µT

µν “ 0. Therefore, we arrive at:

H2
“

1

3M2
P

„

1

2
9ϕ2

` V pϕq

ȷ

, (1.20)

:ϕ ` 3H 9ϕ ` V 1
pϕq “ 0 . (1.21)

These are coupled equations. The scalar field behavior dictates the evolution of the Hubble
rate, which in turn induces a friction in the inflationary background. We would like to
investigate the conditions that give rise to slow-roll inflation in this scenario.

Combining (1.20) and (1.21) to get 9H “ ´1
2

9ϕ2

M2
P
, and using the condition of dominant

potential energy, we can express the slow-roll parameter as

ε ” ´
9H

H2
“

3
2

9ϕ2

1
2

9ϕ2 ` V pϕq
, (1.22)

where in the last equality, the denominator comes from (1.20). We can see that the
condition of a flat potential, i.e V pϕq " 9ϕ is equivalent to ε ! 1. Hence, the slow-
roll condition is satisfied if inflation happens via scalar field that slowly rolls down its
approximately flat potential.

In order for slow-roll inflation to persist, the acceleration of the field must also be
small. It is useful to define the dimensionless parameter δ ” ´

:ϕ

H 9ϕ
. The condition δ ! 1

is equivalent to stating that :ϕ ! 3H 9ϕ in (1.21), which assures that the inflaton’s kinetic
energy stays subdominant during inflation. Under the assumptions tε, |δ|u ! 1, the
inflationary background equations are simplified to:

H2
«

V

3M2
P

, (1.23)

9ϕ «
V 1

3H
. (1.24)

Now, taking the time derivative of (1.24), we obtain 3 9H 9ϕ ` 3H :ϕ « ´V 2 9ϕ which we can
use to introduce a new parameter η defined by:

η ” ε ` δ “ ´
:ϕ

H 9ϕ
´

9H

H2
“

V 2

3H2
. (1.25)
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Substituting (1.23) and (1.24) in (1.22) and (1.25), we arrive at the slow-roll parameter
expressed exclusively in terms of the inflaton potential6:

ε “
M2

P

2

ˆ

V 1

V

˙2

η “ M2
P

V 2

V
.

(1.26)

The parameters (1.26) are extremely useful to judge weather a scalar potential V pϕq can
give rise to slow-roll inflation, i.e if it allows for a regime where tε, |η|u ! 1. They are
important for constraining inflationary models with data and we will come back to them
in the next Chapters.

As far as the inflationary number of e-folds, we can rewrite expression (1.16) in terms
of the inflaton’s evolution:

Ninf ” ln
aend
ai

“

ż tend

ti

Hdt “

ż ϕend

ϕi

H

9ϕ
dϕ «

1

M2
P

ż ϕend

ϕi

V

V 1
dϕ . (1.27)

As we can see from Figure 1.1, we require the amount of expansion from the moment a
given wavelength λ leaves the horizon to the end of inflation, to be equal to the expansion
from the end of inflation until today. The first quantity is precisely the above expression
for Ninf evaluated between field values ϕ˚, associated with the moment λ crosses the
horizon, and ϕend, which marks the end of the inflationary period. For a wavenumber k

representative of a given scale λ, we define the e-fold number from horizon crossing up to
the end of inflation as

Nk “
1

M2
P

ż ϕend

ϕ˚

V

V 1
dϕ . (1.28)

The relevant scales probed by CMB and LSS observations seem to correspond to a range
of e-folds between 50-60 [Liddle and Leach, 2003], assuming a reference scale of k “

0.05 Mpc´1, which will guide our exploration of Nk in Chapter 3.

1.1.2 Contact with Observations

The signatures of cosmological inflation are most generally inferred from observations
of the statistical nature of the CMB and large-scale structure. Although the detection of a
sea of thermal background radiation was extremely important for the establishment of the
Hot Big Bang in the 1960s [Peebles, 2020], the main observational advances in Cosmology
are now tied to the study of small perturbations around the homogeneous background.
Therefore, the analysis of cosmological perturbations involves the treatment of fluctuations
of the metric and the energy momentum-tensor, as they are related through the Einstein
(1.2) and conservation (1.7) equations evaluated up to linear order in perturbation theory.

6From now on, we will denote the parameters (1.26) collectively as the slow-roll parameters.



1.1. THE INFLATIONARY PARADIGM 13

Our current theoretical understanding of how those perturbations were generated is
intimately tied with the development of inflationary cosmology in the 1980s. The theory,
initiated by Mukhanov and Chibisov [Mukhanov and Chibisov, 1981] is based on zero-
point quantum fluctuations of inflaton perturbations around the classical background. In
the usual setting, the perturbations of the inflaton can effectively be treated as a scalar
field in a classical curved background7. The quantization of those perturbations closely
follows the standard treatment of a quantum harmonic oscillator if the fluctuations happen
deep enough in the inflationary regime, where all relevant scales are well inside the horizon
[Baumann, 2012, Birrell and Davies, 1984].

In GR, due to our freedom of choosing coordinates which leave the line element ds2

invariant, we often specify the coordinate system in order to perform calculations, which
is equivalent to choosing a gauge. Therefore, in the spatially flat gauge, the computation
of the variance of inflaton perturbations with characteristic wavenumber k reads

xδϕkδϕk1y “ p2π3
qδpk ` k1

q
H2

2k3
. (1.29)

Although this variance offers a direct link to quantum zero-point fluctuations of the infla-
ton, the statistics of primordial cosmological perturbations are most commonly expressed
in terms of the comoving curvature perturbation R. In the spatially flat gauge, it is
related to the inflaton perturbations according to R “ H δϕ

9ϕ
. One can show that R stays

constant outside the horizon, so that it suffices to compute its variance at the moment
of horizon crossing. Using (1.29), we calculate the variance of the comoving curvature
perturbation as

xRkRk1y “

ˆ

H

9ϕ

˙2

xδϕkδϕk1y “ p2πq
3δpk ` k1

q
H2

˚

2k3

H2
˚

9ϕ2
˚

“ p2πq
3δpk ` k1

qPRpkq ,

(1.30)

where PRpkq is called the power spectrum of comoving curvature perturbations. It is the
Fourier transform of the two-point correlation function ξprq, which is associated with the
probability of finding two correlated elements separated by a distance r in a distribution
sample. Thus, PRpkq contains the statistical information of primordial perturbations in
the large-scale structure8. Therefore, the primordial power spectrum serves as an input
of initial conditions for the propagation of perturbations as cosmic sound waves in the
primordial plasma, which leave striking signatures in the CMB temperature distribution.

7In the following we assume a light scalar field (mϕ ! H).
8In standard single field slow-roll inflation, the variance of δϕ is computed from the quantization of

an approximately free harmonic oscillator, which has a Gaussian distribution in real space. Therefore,
the two-point function (or power spectrum) contains all the statistical information and higher-order
correlations vanish. More involved inflationary models, such as multi-field inflation, predict the existence
of non-gaussianities, which would be detected as higher point correlations in the CMB anisotropies.
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In the literature, it is customary to use the dimensionless power spectrum ∆2
Rpkq “

k3

2π2PRpkq, which, according to (1.30), is written as

∆2
Rpkq “

H2
˚

p2πq2

H2
˚

9ϕ2
˚

“
1

8π2M2
P

H2
˚

ε˚

, (1.31)

where, in the last equality, we have substituted the definition of the slow-roll parameter
ε. If the inflationary expansion was exactly de Sitter, one would expect a perfect scale
invariance of the dimensionless power spectrum (1.31). But since inflation has to end,
the expansion rate is not exactly constant, and scales exit the horizon at slightly different
values of H˚. Therefore, we can parameterize ∆2

Rpkq according to:

∆2
Rpkq “ AS

ˆ

k

k˚

˙nS´1

,

AS ”
1

8π2M2
P

H2
˚

ε˚

,

nS ´ 1 ”
d ln∆2

Rpkq

d ln k
.

(1.32)

The quantities AS and nS are denoted the amplitude of primordial scalar perturbations
and the scalar spectral index, respectively. The scale k˚ is taken as a reference point, and
all quantities on the right-hand side are evaluated at the moment k˚ crosses the horizon.

As mentioned, single field slow-roll inflation predicts a percent-level deviation from
perfect scale invariance (nS “ 1). AS and nS can be constrained, as well as the other
parameters of a given cosmological model, by adjusting the theoretical curve with the
observed CMB power spectrum in Figure 1.2.

Figure 1.2: The CMB temperature power spectrum [Aghanim et al., 2020a].
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The horizontal axis in Figure 1.2 are Legendre multipoles, which appear as a result of
the two-dimensional projection of the CMB temperature distribution in the sky in terms
of spherical harmonics. The main contribution to the power at a given multipole comes
from scales k „ l

χ˚
, where χ˚ is the conformal distance to the last-scattering surface. The

location of the peaks in the power spectrum are associated with the k modes that entered
the horizon and sourced cosmic sound waves in the primordial plasma that were at an
extreme of an oscillation at the moment of CMB decoupling9. Thus, these oscillations
were captured in the LSS as correlations at those particular scales. The locations of the
peaks are at lpeaks „ nπ dA

rs
, which depend on the physics of the oscillatory motion of the

photon-baryon fluid, associated with the sound horizon at recombination rs, and on the
angular distance to the last scattering surface dA. Naturally, these physical quantities are
sensitive to the adopted cosmological model and its parameters. Also, the correlations in
the CMB anisotropies indicate that the initial perturbations are strongly adiabatic, where
the initial departure from homogeneity of different species is determined by a single degree
of freedom [Lyth and Liddle, 2009]. In what concerns the primordial power spectrum, a
change of AS produces an overall scaling of the total spectrum, while nS influences the
relative power of large to smaller scales. The latest constraints from CMB data yield
AS „ 2.1 ¨10´9 and nS „ 0.9603 [Aghanim et al., 2020a], which is a remarkable agreement
with the inflationary picture.

Apart from scalar fluctuations, the metric exhibits tensor perturbations, which are also
sourced from the dynamics of the inflationary period. By splitting the metric tensor into a
homogeneous background and a perturbation hij, we can perform a similar quantization
of the two tensor polarization modes, as was done for the scalar case. The resulting
dimensionless power spectrum of tensor perturbations reads [Baumann, 2012]

∆2
t pkq “

2

π2

H2
˚

M2
P

. (1.33)

Tensor perturbations are often normalized relative to the scalar counterpart. The tensor-
to-scalar ratio is defined as

r ”
∆2

t pkq

∆2
Rpkq

. (1.34)

Since ∆2
R is fixed and ∆2

t9H2 „ V , the tensor to scalar ratio is a direct measure of the
energy scale of inflation. The detection of tensor perturbations has evaded the tests of
latest CMB observations, with the upper limit being constrained to the order of r À 0.03.

The parameters AS, nS and r can be directly related to the slow-roll parameters ε and

9We are assuming an instantaneous recombination for this qualitative analysis.
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η and to the inflationary potential by substituting (1.26) into (1.32) and (1.34):

AS “
1

24π2M2
P

V˚

ε˚

nS ´ 1 “ ´6ε˚ ` 2η˚

r “ 16ε˚ .

(1.35)

We will in fact return to those expressions in Chapters 2 and 3 in order to constrain
inflationary models with CMB data.

1.1.3 Reheating

After the inflationary expansion, the Universe sits in a very low-entropy state, with its
energy density consisting of a combination of the inflaton’s kinetic and potential energy.
As previously discussed, the initial conditions for the Hot Big Bang consist of a extremely
hot, high-entropy state, populated by relativistic species. Therefore, the period of transi-
tion between the end of inflation and the onset of the radiation-dominated epoch is called
reheating, where, at its end, the Universe is assigned an initial temperature T and the
standard Hot Big Bang evolution follows.

The specific physical processes that took place during the reheating epoch are not
entirely known. However, it is customary to visualize a standard picture, where the in-
flaton undergoes coherent oscillations around the minimum of its potential, ultimately
dissipating energy to the Standard Model particles [Kofman et al., 1997]. As pointed out
in [Kofman et al., 1994], before the perturbative decay of the inflaton, non-perturbative
processes, such as parametric and non-parametric resonant decays, may have been im-
portant in the first stages of the post-inflationary expansion, called preheating.

Notwithstanding, we can perform a more general analysis of the reheating period that
remains agnostic about its specific physical processes and still allows us to investigate
some of its observational signatures. To this end, we can focus on the comoving Hubble
radius pakHkq´1, associated with the moment a given scale k “ akHk crossed the horizon
during inflation. By following this scale’s evolution from horizon crossing to the present
day, we can relate it to the current Hubble radius according to [Liddle and Leach, 2003]:

k

a0H0

“
akHk

a0H0

. (1.36)

We now split the right-hand side into contributions from various benchmark stages of the
standard cosmic evolution. After the time inflation ends, we assume a reheating period
that culminates in a radiation-dominated Universe, which lasts up to the equivalence
time between radiation and matter. The instantaneous transitions between those epochs
are labeled by the subscripts ’end, ’reh’, ’RD’ and ’eq’, respectively. Thus, we re-write
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equation (1.36) as

k

a0H0

“
ak
aend

aend
areh

areh
aRD

aRD

aeq

aeq
a0

Hk

H0

“ e´Nke´Nrehe´NRD
aeqHeq

a0H0

Hk

Heq

,

(1.37)

where in the last equality we explicitly wrote the number of e-folds between horizon
crossing and the end of inflation, during reheating and during radiation dominance, re-
spectively. Taking the logarithm on both sides, we have

ln

ˆ

k

a0H0

˙

“ ´Nk ´ Nreh ´ NRD ` ln

ˆ

aeqHeq

a0H0

˙

` ln

ˆ

Hk

Heq

˙

. (1.38)

Equation (1.38) is often called the ’matching equation’, as it ties together the cosmic
evolution of a given scale from horizon exit during inflation to the present. We can ma-
nipulate it by following the steps developed in [Cook et al., 2015]. First, we parameterize
the expansion during reheating by assuming a standard fluid description, where the evo-
lution is dictated by an - a priori unknown - equation of state parameter wreh. Thus,
using ρ9a´3p1`wq, we can express the number of e-folds during reheating as

Nreh “
1

3p1 ` wrehq
ln

ˆ

ρend
ρreh

˙

, (1.39)

where ρend and ρreh are the energy densities at the end of inflation and at the end of
reheating, respectively. We can write ρend “ 3

2
Vend by making wϕ “ ´1{3 at the end of

inflation10. Also, from fluid thermodynamics we can change from the energy density to
the temperature at the end of reheating according to ρreh “ π2

30
grehT

4
reh, with greh being

the effective number of relativistic species at the onset of the radiation dominated epoch.
Therefore, we write Nreh as

Nreh “
1

3p1 ` wrehq
ln

ˆ

45

π2

Vend

grehT 4
reh

˙

. (1.40)

As the temperature at the end of reheating Treh, i.e at the beginning of the Hot Big
Bang, is subject to large uncertainties, we can explore the conservation of entropy in
the radiation gas to replace it for the cosmic temperature today. Therefore, taking into
account the change in helicity states from reheating to today, we make

Treh “ T0

ˆ

a0
areh

˙ ˆ

43

11greh

˙1{3

“ T0

ˆ

a0
aeq

˙

eNRD

ˆ

43

11greh

˙1{3

. (1.41)

10Notice that w ă ´1{3 is the requirement that the eos parameter of the inflaton must satisfy in order
to accelerate the Universe. Thus, when w “ ´1{3 inflation ends.
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Now, plugging (1.41) into (1.40), we get:

3p1 ` wrehq

4
Nreh “ lnpVendq

1{4
´

1

4
ln

ˆ

π2

45
greh

˙

´ ln

ˆ

T0a0
aeq

˙

´
1

3
ln

ˆ

43

11greh

˙

´ NRD .

(1.42)
We would like to obtain an expression that relates Nk to Nreh only. To this end, we

can eliminate the dependence on NRD by isolating it from the matching equation (1.38)
and substituting in (1.42). After some algebraic manipulations, we finally get

Nk “
´1 ` 3wreh

4
Nreh ´ ln

˜

V
1{4
end

Hk

¸

´
1

4
ln

ˆ

45

π2greh

˙

`
1

3
ln

ˆ

43

11greh

˙

´ ln

ˆ

k

a0T0

˙

.

(1.43)
The last three terms in the above expression are, in principle, fixed by assuming standard
ΛCDM Cosmology. Hence, inserting greh « 100, T0 “ 2.7 K and choosing the pivot scale
of k “ 0.05 Mpc´1, we obtain

Nk “
´1 ` 3wreh

4
Nreh ´ ln

˜

V
1{4
end

Hk

¸

` 61.55 . (1.44)

The first two terms in the right-hand side are model-dependent, as one would need to
specify an equation of state parameter for the reheating stage as well as a specific infla-
tionary potential. An useful guide is to consider a power-law potential V pϕq9|ϕ|n for the
oscillatory phase during reheating. Under this approximation, it was shown in [Turner,
1983] that for large time scales, the field oscillations average out to mimic an expansion
period dominated by a fluid with equation of state parameter

wreh “
n ´ 2

n ` 2
. (1.45)

In Chapter 3, we will show that for our inflationary potential under consideration,
the evolution after inflation is dictated by an approximately quadratic, followed by an
approximately quartic potential. Ultimately, that allows us to use (1.45) to assign an
effective matter-dominated and radiation-dominated splits to the reheating stage, which
will be useful to quantitatively constrain the inflationary e-fold number from a general
reheating analysis.

1.2 The ΛCDM Model

The current concordance model of Cosmology is the result of several surprising dis-
coveries in the last century. In 1933, astronomer Fritz Zwicky pointed that the sum of
the masses of all the stars in the Coma cluster was not enough to prevent the galaxies
from escaping the cluster’s gravitational pull [Zwicky, 1933]. This became known as the
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missing mass problem, and was an astronomical puzzle for many years. In the 1970s, a
group led by astronomer Vera Rubin helped to shed more light into the issue [Rubin et al.,
1978]. They observed that the mass of all the stars within a typical galaxy could not ac-
count for the mass needed to keep the stars orbiting the galactic center. Therefore, there
must be some kind of exotic, non-luminous matter constituent in the Universe, which was
dubbed as dark matter. It does not radiate, so we can only infer its existence from its
gravitational influence. It was not clear, however, what was the extent of the role dark
matter would play in the grand scheme of the cosmos.

Since the end of the 1990s and early 2000s, Cosmology started to greatly benefit from
high-precision measurements, from both early- and late-time surveys. Ultimately, that
allowed us to unveil the dynamics of large-scale structure - and consequently its energy
content - with great accuracy. Observations of gravitational lensing - the bending of
background light passing near a massive object - showed that dark matter composes the
majority of the gravitational matter we observe in the Universe. Also, from CMB mea-
surements, it became clear that dark matter had to be present in the early Universe,
so that it could provide the gravitational potential wells necessary for the formation of
large-scale structure. From the particle physics standpoint, there are ongoing efforts to
find a dark matter particle in the current particle accelerators, while many alternatives
have been proposed for dark matter in Beyond the Standard Model Physics.

Another breakthrough happened in 1998, when a group led by Adam Riess discov-
ered that light coming from distant Type Ia Supernovae (SNIa) appeared dimmer than
expected, based on standard cosmological assumptions [Riess et al., 1998]. Since SNIa
are standardized candles, i.e objects with well-determined luminosity, we can directly
infer their distance from the measured flux11, so the SNIa were also farther away than
anticipated. Considering the range of distances probed by the experiment, this effect
must come from a cosmological origin, pointing to a discrepancy between the assumed
cosmological expansion and the novel data. A solution appears if one assumes that the
Universe is currently undergoing an accelerated expansion. It has the effect of increasing
the physical distance that light has to travel from a SNIa event to us, explaining the
weakening of its light intensity. Since we know that a cosmic fluid composed of any of
the SM particles does not produce this effect, this acceleration must be propelled by an
exotic component of the Universe, called dark energy. In the context of classic GR, the
simplest way to give origin to a dark energy component is by introducing a constant Λ

into the Einstein-Hilbert lagrangian, which gives rise to an extra term in the action (1.1):

S “
M2

P

2

ż

d4x
?

´gpR ´ 2Λq . (1.46)

11The integrated flux coming from all wavelenghts is f “ L
4πd2 , where L is the objects’ intrinsic

luminosity and d its distance.
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The Friedman equation (1.5) is modified accordingly:

H2
ptq “

1

3M2
P

pρptq ` ρΛq ´
k

a2
, (1.47)

where ρΛ ” M2
PΛ is the (constant) density of dark energy. Note that, according to the

conservation equation (1.7) with 9ρΛ “ 0 we find pΛ “ ´ρΛ. Hence, the cosmological con-
stant behaves as a fluid with negative pressure, contributing to a positive acceleration for
the Universe. From the theoretical point of view, one could interpret Λ as vacuum energy
density, resulting from the zero-point energy of all quantum fields in nature. However,
the inferred value from cosmological measurements is „ 120 order of magnitudes smaller
than expected from quantum field theoretical calculations. This enormous discrepancy is
called the cosmological constant problem and still motivates several discussions regarding
the true nature of dark energy.

In terms of the density parameter ΩΛ “ ρΛ{ρc, we can rewrite equation (1.10) as

H2
paq “ H2

0 pΩma
´3

` ΩΛq , (1.48)

where Ωm “ Ωb ` Ωc is the matter density parameter in terms of the baryonic and dark
matter fractional density. We have also dropped the radiation term, which is negligible
nowadays Ωr „ 10´4 and spatial curvature, which is diluted to zero due to inflation.

In order to be constrained with large-scale observations, the ΛCDM model assumes
six free parameters: the amplitude of primordial scalar perturbations AS; the scalar
spectral index nS; the physical baryon density and matter densities: ωb ” Ωbh

2 and
ωm ” Ωmh

212; the cosmological constant density parameter ΩΛ and the integrated optical
depth to recombination τ , which affects the propagation of CMB photons through the
ionizing effect of the first generation of stars. Their measured values are in Table 1.1.

Parameter Value
109AS 2.198 ˘ 0.085
nS 0.967 ˘ 0.004

100ωb 2.242 ˘ 0.014
100ωm 14.24 ˘ 0.009
ΩΛ 0.689 ˘ 0.006
τ 0.056 ˘ 0.007

Table 1.1: Parameters of ΛCDM Cosmology [Baumann, 2022].

Thus, the current concordance picture of Cosmology is that we are currently living in
a spatially flat Universe, dominated by a cosmological constant, with most of the matter
density in form of dark matter and a small fraction of ordinary baryonic matter.

12The parameter h is the dimensionless Hubble constant, defined as H0 ” 100h km s´1 Mpc´1
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1.2.1 Current Cosmological Tensions

As mentioned, the ΛCDM model faces the challenge of providing a satisfactory phys-
ical interpretation for the nature of dark matter and dark energy. Apart from these
theoretical issues, the model has also been questioned from the observational front in the
last decade, with non-trivial discrepancies between early- and late-time surveys.

The currently most significant cosmological tension is focused on the present-day ex-
pansion rate, the Hubble constant H0. It is most directly measured by observations of
nearby objects, up to redshifts z „ 0.1, or distances of „ 100 Mpc. Since it is a probe of
the local Universe, it does not require knowledge of the whole dynamics of the expansion
rate Hpzq, so we can Taylor expand the scale factor aptq around its present value:

aptq “ apt0q ` 9apt0qpt ´ t0q ` . . .

ùñ
aptq

apt0q
´ 1 “ H0pt ´ t0q ` . . . .

(1.49)

Using the definition of the cosmological redshift z ”
aptq
apt0q

´ 1, we can write the above
expression up to first order as

z “ H0dL ` . . . , (1.50)

where, dL “ t ´ t0 is, in natural units, the distance traveled by a light signal sent from
some time t in the past. This equation was employed by Edwin Hubble, in the 1930s,
in the process of finding evidence for an expanding Universe, using the redshift of light
coming from receding nearby galaxies. Nowadays, a similar version, with higher order
terms, is used in order to assess slightly more distant objects:

dL “ H´1
0

„

z `
1

2
p1 ´ q0qz

2
´

1

6
p1 ´ q0 ´ 3q20 ` j0qz

3

ȷ

. (1.51)

The parameters q0 and j0 are related to higher order derivatives of the scale factor.
In this century, the SH0ES collaboration [Riess et al., 2022], using the Hubble Space

Telescope, was able to build a distance ladder and establish a distance-redshift relation
(1.51) with observations of SNIa, callibrated with Cefeids in the Large Magellanic Cloud.
Their best-fit value for the Hubble constant is H0 “ 73.04 ˘ 1.04 km s´1 Mpc´1.

Another possibility of measuring the Hubble constant is by assessing the distant Uni-
verse, through observations of the Cosmic Microwave Background. In section 1.1.2 we
discussed how the CMB temperature power spectrum is able to constrain the parameters
of a cosmological model. However, our discussion of ΛCDM did not include the Hubble
constant as a free parameter. Since the Friedmann equation (1.48) relates H0 to the
density parameters Ωm and ΩΛ, we can make ΩΛ a derived parameter and substitute
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ΩΛ “ 1 ´ Ωm
13 back into (1.48):

H2paq

p100 km s´1 Mpc´1
q2

“ ωmpa´3
` 1q ` h2 . (1.52)

The parameter-dependence in the above expression for the expansion rate changes the
distance to the last-scattering surface, which affects the peak locations in the CMB spec-
trum. The physical matter density ωm is well constrained by the height of the first few
peaks in the power spectrum. Therefore, in order to maintain the peak locations, the
CMB spectrum requires a Hubble constant of H0 “ 67.36˘0.54 km s´1 Mpc´1 [Aghanim
et al., 2020a].

This last result represents a discrepancy of „ 4σ with the value from the discussed
local distance-ladder measurements, known as the Hubble constant tension. One might
wonder if this disagreement is a consequence of systematic errors in the datasets, but this
conjecture cannot solve the tension alone [Di Valentino et al., 2021c]. On the other hand,
this picture might be an evidence of beyond ΛCDM signatures in Cosmology. Several sce-
narios have been proposed in order to resolve or alleviate the tension [Di Valentino et al.,
2021a]. However, modifying the standard cosmological model in an effort to account for
the H0 tension has proven to be rather difficult, given the success of the six-parameter
ΛCDM in satisfying the constraints from a multitude of datasets.

Another cosmological parameter that has been at the center of recent observational
discrepancies is the clustering parameter σ8. It measures the amplitude of matter pertur-
bations at the scale of 8 h´1 Mpc, and is given by [Dodelson, 2003]:

σ8 ” rxδ2m,8ys
1{2

“

„

1

2π2

ż

d ln kk3P pkq|W pkq|
2

ȷ1{2

, (1.53)

with δm being the density contrast of matter perturbations and W pkq the window func-
tion. The linear matter power spectrum, P pkq encodes the evolution of scales throughout
cosmic history, making the clustering parameter dependent on the cosmological model.

Lower redshift assessments of σ8 involves weak gravitational lensing measurements,
which affects the shapes of observed galaxies. On cosmological scales, we can use this
effect to better understand the matter distribution of the Universe. Since this is a more
direct probe of matter perturbations, one can use the definition in (1.53) to constrain the
clustering parameter. It is often quantified in terms of S8 ” σ8

a

Ωm{0.3, where Ωm is
the overall matter density parameter. In particular, the Kilo-Degree Survey (KiDS-1000)
lensing estimation reported a clustering value of S8 “ 0.759`0.024

´0.021 [Asgari et al., 2021].
On the other hand, we can also investigate the clustering of matter through observa-

tions of the CMB. Since the CMB power spectrum places tight constraints on the cosmo-

13This comes from evaluating the Friedmann equation (1.48) in the present day, which yealds 1 “

Ωm ` ΩΛ.
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logical parameters, it also probes the amplitude and growth of the matter distribution,
hence, σ8. This model-dependent estimation, however, is sensitive to other parameters
that might affect the clustering of matter, such as the optical depth to reionization τ

[Di Valentino et al., 2021b]. Assuming flat ΛCDM, CMB data seem to prefer a larger
amount of matter clustering, returning a value of S8 “ 0.834 ˘ 0.016 [Aghanim et al.,
2020a], which shows a discrepancy of „ 3σ with weak lensing measurements.

The usual theoretical approach to aleviate the S8 tension involves modifying the mat-
ter sector of ΛCDM. However, any modification of Ωm also induces a modification of
the CMB-inferred value of H0, given the tight constraints on the physical matter density
ωm “ Ωmh

2, known as geometric degeneracy. In turn, this produces a modification of
distances to sources, of the sound horizon, the growth of matter and CMB anisotropies,
which usually result in a higher value of σ8 due to an extended period of matter domination
[Di Valentino et al., 2021b]. Hence, the H0 and S8 tensions are correlated, and proposals
applied to alleviate one usually tend to exacerbate the other. It goes without saying that
finding a solution to the discrepancies on both of these parameters is troublesome. We
will return to this discussion in Chapter 3.



Chapter 2

Aspects of Higgs Inflation

So far, among the fundamental forces of nature, everything discussed was only con-
cerned with the gravitational interaction and its effect on large-scale structure. As gravity
is currently portrayed by the laws of General Relativity, the strong force, the weak force
and electromagnetism, are described by what is called the Standard Model of Particle
Physics (SM). The structure of the SM is the result of many developments in Quantum
Field Theory and Group Theory in the last century [Pais, 1986]. The former incorporates
the rules of quantum mechanics and special relativity to fundamental fields and, in a
phenomenological point of view, allows one to compute amplitudes for numerous elemen-
tary particle processes; while the latter allows us to write the SM lagrangian by means of
symmetry arguments. In this sense, this lagrangian is made invariant with respect to the
set of transformations:

Poincaré ˆ SUCp3q ˆ SULp2q ˆ UY p1q . (2.1)

The first term in (2.1) refers to the Poincaré group, which, ultimately, is responsible
for assigning the spin of elementary particles1 and establishing the structure of the free
lagrangian. The remaining groups in (2.1) are gauge groups, which have the role of
adding interaction terms to the lagrangian, expressed in terms of gauge fields. SUCp3q

is the symmetry group of the theory of quantum chromodynamics (QCD), which governs
the interaction of charged color particles (quarks) with gluons. SULp2q ˆ UY p1q is the
electroweak sector, acting on left-handed chirality particles that carry the hypercharge
quantum number. All matter particles are charged under the SULp2q ˆ UY p1q symmetry.

The matter particles of the SM are collectively called fermions. They are described
by spin-1{2 fields and are divided into quarks and leptons. Quarks carry color charge and
therefore are charged under both QCD and electroweak interactions. Leptons do not carry
color charge and are just part of the electroweak sector. The force mediator particles are

1Particles of different spin are associated with different representations of the ortochronous Lorentz
group, contained in the larger Poincare group.
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represented by spin-1 fields and are called gauge bosons. They are the gluon of QCD, the
W`, W´ and Z of weak interaction phenomena, and the photon of electromagnetism.

This whole puzzle of the SM particles, interactions and symmetries was completed
in the 1970s, after the establishment of the Higgs mechanism and electroweak symmetry
breaking. This is where the Higgs boson, the main character of our discussion, came into
play.

2.1 The Higgs in the Standard Model of Particle

Physics

In the 1950s, a group led by Chien-Shiung Wu [Wu et al., 1957] discovered a violation of
the parity symmetry in processes involving the weak interaction. Later, Richard Feynman
and Murray Gell-Mann [Feynman and Gell-Mann, 1958] proposed a theory in which only
left-handed particles (and right-handed antiparticles) are charged under the weak force,
which would account for the observed violation of parity. A profound consequence is that
all fermions of the SM should be fundamentally massless2. Evidently, that is not the
case. A solution was put forward by Higgs-Brout-Angels [Englert and Brout, 1964, Higgs,
1964] and, independently, by Guralnik-Hagen-Kibble [Guralnik et al., 1964] in 1964, in
which a new field, the Higgs, was introduced. In the fundamental theory, at high energies,
every field is massless. Particles that couple to the Higgs would gain their masses in a
spontaneous symmetry breaking (SSB) process of the Higgs potential. This mechanism
is also incorporated in the unification of the electromagnetic and weak interactions, the
electroweak model of Weinberg-Glashow-Salam [Glashow, 1959, Salam, 1968, Weinberg,
1967]. Thus, the electroweak sector of the SM symmetry groups in (2.1) is spontaneously
broken into the known electromagnetic Up1q gauge group, according to:

SULp2q ˆ UY p1q
SSB
ÝÝÑ UEMp1q . (2.2)

The spontaneous symmetry breaking process is formulated in terms of the dynamics
of the Higgs field. A potential that can give rise to such mechanism is

V pϕq “
µ2

2
ϕ2

`
λ

4
ϕ4 , (2.3)

in which ϕ2 “ Φ:Φ. Φ “

˜

ϕp`q

ϕp0q

¸

is the Higgs SUp2q doublet and the superscripts reflect

the electric charges of each Higgs component.3 This potential can, in fact, undergo SSB

2A spinor mass term represented by L Ą mψ̄ψ “ mψ̄LψR ` mψ̄RψL is not allowed in chiral theories
(such as the one proposed by [Feynman and Gell-Mann, 1958]), since it explicitly mixes right- and left-
handed spinors.

3This is based on the Higgs coupling with the other SM fields, so that all interaction terms conserve
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if µ2 ă 0, as shown in Figure 2.1.

Figure 2.1: Higgs potential (2.3).

Notice that a transition between the regimes of µ2 ą 0 and µ2 ă 0 is associated with
an evolution of the minimum of the potential - obtained by solving BV

Bϕ
“ 0 - at ϕ “ 0,

to the minima at ϕ “ ˘

b

´
µ2

λ
. Under this last vacuum configuration, the symmetries

of (2.1) are not realized anymore. Instead, they are reduced to (2.2), and we say that a
spontaneous symmetry breaking has occurred.

This non-trivial vacuum configuration is only possible because the Higgs is a scalar
field, associated with a spin-0 particle. One cannot attribute a non-zero VEV for fermions
or vector bosons because they possess non-trivial spin, which would imply in a breaking of
Lorentz symmetry (vacuum should be orthogonal to non-zero spin states). For the same
reason, we infer that the Higgs VEV ought to be represented by the neutral component of
the Higgs doublet, since the vacuum should be electric neutral. Therefore, we can propose
a general parametrization of the Higgs doublet in vacuum as

Φ “

˜

0
v?
2

¸

, (2.4)

where v « 246 GeV is the Higgs VEV. As mentioned earlier, the symmetry breaking
process is associated with the generation of fermion and vector boson masses. That can
be seen through their coupling with the Higgs after SSB.

electric charge.
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First, let us consider a generic lepton4 generation coupled to the Higgs doublet (2.4).

The lepton SULp2q doublet is L “

˜

νl
L

lL

¸

, where lL and νl
L are the lepton’s and the

lepton neutrino’s left-handed components, respectively. The right-handed counterpart is
a SULp2q singlet lR

5. The interaction term with the Higgs can be written as [Schwartz,
2014]

L Ą ylL̄ΦlR ` h.c. “ yl

´

ν̄l
L l̄L

¯

˜

0
v?
2

¸

lR ` h.c.

“ mlpl̄LlR ` l̄RlLq, ml “ yl
v

?
2
,

(2.5)

where ml is the lepton’s mass and yl the lepton’s Yukawa coupling. Thus, a coupling with
the Higgs produces, after SSB, a lepton mass proportional to the Higgs VEV.

In the case of gauge bosons, we first start by writing the lagrangian for the gauge
fields’ kinetic terms and the Higgs sector:

L Ą ´
1

4
pW a

µνq
2

´
1

4
B2

µν ` pDµΦq
:
pDµΦq ` V pΦq , (2.6)

with W a
µν “ BµW

a
ν ´ BνW

a
µ ´ gϵabcW b

µW
c
ν and Bµν “ BµBν ´ BνBν being the SUp2q and

Up1q field strenghts, respectively. W a
µ “ W 1

µ ,W
2
µ ,W

3
µ and Bµ are, respectively, the SUp2q

and Up1q gauge fields.
The generation of masses can be visualized by the definition of the Higgs covariant

derivative, DµΦ, appearing in the above lagrangian. The procedure of introducing inter-
actions in the SM involves localizing a gauge symmetry6, such as the ones of (2.1). After
this, in the interesting of keeping the lagrangian gauge invariant, one is forced to redefine
the derivatives in terms of a more general covariant derivative. Since the Higgs is charged
under both SULp2q and UY p1q, its covariant derivative features the gauge fields of both
these symmetry groups:

DµΦ “ BµΦ ´
i

2
gW a

µσ
aΦ ´

i

2
g1BµΦ . (2.7)

Here, g and g1 are the SUp2q and Up1q couplings, respectively. σa “ σ1, σ2, σ3 are
the SUp2q generators, often called the Pauli matrices in the fundamental representa-
tion. Therefore, the kinetic term for the Higgs pDµΦq:pDµΦq “ |DµΦ|2, using (2.4) and

4The generation of quark masses is still understood in terms of the Higgs mechanism but is a little
more involved due to the mass (CKM) mixing matrix [Schwartz, 2014]. For our purposes, we can focus
on leptons.

5Right-handed neutrinos have never been observed so they are not included in the SM.
6The gauge symmetry groups in (2.1) define a set of transformations that preserve said symmetry.

These transformations can be effectively described by a set of generators and parameters. Localizing the
symmetry means making these parameters space-time dependent.
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(2.7) reads [Schwartz, 2014]

L Ą |DµΦ|
2

“g2
v2

8

´

0 1
¯

˜

g1

g
Bµ ` W 3

µ W 1
µ ´ iW 2

µ

W 1
µ ` iW 2

µ
g1

g
Bµ ´ W 3

µ

¸

ˆ

˜

g1

g
Bµ ` W 3

µ W 1
µ ´ iW 2

µ

W 1
µ ` iW 2

µ
g1

g
Bµ ´ W 3

µ

¸ ˜

0

1

¸

“g2
v2

8

«

pW 1
µq

2
` pW 2

µq
2

`

ˆ

g1

g
Bµ ´ W 3

µ

˙2
ff

.

(2.8)

These terms are quadratic in the gauge fields, so we can identify them as mass terms.
However, the masses must be diagonalized. This can be done under the set of field
redefinitions:

Zµ ” cos θWW 3
µ ´ sin θWBµ3

Aµ ” sin θWW 3
µ ` cos θWB3

µ

W˘
µ ”

1
?
2

pW 1
µ ¯ iW 2

µq ,

(2.9)

where θW is the Weinberg angle. With the fields (2.9) and the covariant derivative (2.8),
we can rewrite the lagrangian (2.6) as

L Ą ´
1

4
F 2
µν ´

1

4
Z2

µν `
1

2
m2

ZZ
µZν ´

1

2
pBµW

`
ν ´ BνW

`
µ qpBµW

´
ν ´ BνW

´
µ q ` m2

WW`
µ W µ´,

mZ “
g

2 cos θW
v, mW “

g

2
v .

(2.10)

Therefore, the above lagrangian tells us that, after SSB, the gauge bosons Z and W˘ also
acquire masses proportional to the Higgs VEV. The one combination in (2.9) that does
not gain mass is precisely the electromagnetic photon Aµ.

Thus, the Higgs mechanism provides a way of breaking the electroweak symmetry,
generating both the phenomenology of the weak interactions mediated by massive vector
bosons, and ordinary electromagnetism with the massless photon. Also, thorugh the
Yukawa couplings, the Higgs VEV also generates mass to the fermions of the SM. This
whole machinery has been well tested and supported experimentaly, especially with the
discovery of the Higgs at the LHC in 2012 [Aad et al., 2012].

2.2 The Higgs as the Inflaton

Keeping in mind the discussion of Chapter 1, the idea of promoting the Higgs boson
to the status of the inflaton is tempting, since it is the only scalar particle in the SM.
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Thus, it is not surprising that this hypothesis has been raised by several authors in the
recent past [Barbon and Espinosa, 2009, Bezrukov and Shaposhnikov, 2008, Burgess et al.,
2010]. Unfortunately, the potential (2.3) is poorly constrained by CMB measurements, as
it requires a value for the Higgs quartic coupling far too small λ „ 10´13 to reproduce the
observed amplitude of the primordial power spectrum. Therefore, in 2008, Bezrukov and
Shaposhnikov proposed a new Higgs inflationary potential, which had the novel feature
of a non-minimal coupling between the Higgs and gravity [Bezrukov and Shaposhnikov,
2008]. The action is then given by (1.17), where we now denote the Higgs scalar as h,
more commonly used in the literature:

S “

ż

d4x
?

´g

„

R ´
1

2
BµhB

µh ´ V phq

ȷ

,

V phq “
µ2

2
h2

`
λ

4
h4

`
1

2
ξh2R ,

(2.11)

where ξ is the non-minimal coupling parameter. The addition of the non-minimal term
considerably increases the difficulty in manipulating the dynamic equations related to such
potential. Therefore, it is customary in the literature to perform a change of variables,
both in the metric and in the scalar field, in order to simplify the analysis. With regard to
the metric gµν , we employ a conformal transformation of the type [Faraoni et al., 1999]:

gµν Ñ g̃µν “ Ω2
pxqgµν , (2.12)

with Ωpxq being a spacetime-dependent conformal factor. The transformation (2.12)
corresponds to a local rescaling of spatial and temporal distances. The action (2.11),
which is a function of the original metric gµν , is referred to as the Jordan frame action,
whereas the action as a function of the conformally transformed metric g̃µν is called the
Einstein frame action. Naturally, the metric determinant g and the Ricci scalar R are
going to change under the conformal transformation. Following the steps developed in
[Garcia-Bellido et al., 2009], under the transformation (2.12), the action (2.11) transforms
as

SJ Ñ SE “

ż

d4x
?

´g

#

M2
P ` ξh2

2Ω2

„

R̃ ` 3l̃ lnΩ2
´

3

2
g̃µν∇̃µ lnΩ

2∇̃ν lnΩ
2

ȷ

´
B̃µhB̃µh

2Ω2
´

VJphq

Ω4

+

.

(2.13)
We can conveniently choose the conformal factor in order to recover the usual Einstein-
Hilbert term. Thus, we make:

Ω2
phq “ 1 `

ξh2

M2
P

. (2.14)
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Under this specific transformation, the action above reduces to

SE “

ż

d4x
a

´g̃

"

M2
P

2
R̃ ´

1

2

„

Ω2 ` 6ξ2h2{M2
P

Ω4

ȷ

g̃µνBµhBνh ´
VJphq

Ω4

*

, (2.15)

where we have omitted the specific form of Ω2 to keep the expression cleaner. The last
step is getting rid of the non-minimal kinetic term for the scalar field. To this end, we
can perform a field redefinition:

h Ñ χ,
dχ

dh
“

c

Ω2 ` 6ξ2h2{M2
P

Ω4
“

d

1 ` ξp1 ` 6ξqh2{M2
P

p1 ` ξh2{M2
P q2

. (2.16)

As we will most generally investigate the scalar field dynamics during inflation in the
Einstein frame, we drop the tilde notation from now on. The action in the Einstein
frame, as a function of the new scalar field χ, reads:

SE “

ż

d4x
?

´g

„

M2
P

2
´

1

2
BµχB

µχ ´ VEpχq

ȷ

,

VEpχq “
1

Ω4phpχqq
VJphpχqq .

(2.17)

Note that the action has recovered the usual minimal coupling of the scalar field with
gravity. The Einstein frame potential is obtained from the Jordan frame potential (2.11)
and the conformal factor Ω2phq “ 1 `

ξh2

M2
P
, where the dependence in h must be changed

to a dependence in χ according to (2.16). This can be done by direct integration, which
yields

?
ξ

MP

χphq “
a

1 ` 6ξ sinh´1
p
a

1 ` 6ξuq ´
a

6ξ sinh´1

ˆ

a

6ξ
u

?
1 ` u2

˙

, (2.18)

where u ”
?
ξMP . We can work in the large coupling regime (which will be justified

later) and assume ξ " 1. Thus, 1 ` 6ξ « 6ξ, and we can use the identity sinh´1 x “

lnpx `
?
x2 ` 1q to approximate equation (2.18) to

χphq “
?
6MP ln

b

1 ` ξh2{M2
P “

?
6MP lnΩ,

ùñ Ω2
pχq “ e

?
2
3

χ
MP .

(2.19)

Therefore, the approximation ξ " 1 allows us to express the conformal factor in terms
of the new field χ in a very simple way. Hence, we can use (2.17) to write the Einstein
frame potential as

VEpχq “
λM4

P

4ξ2

„

e

b

2
3

χ
MP ´

ˆ

1 ` ξ
v2

M2
P

˙ȷ2

e
´2

?
2
3

χ
MP . (2.20)
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Since v ! MP we can approximate 1 ` ξ v2

M2
P

« 1 and effectively write the inflationary
potential as

V pχq “
λM2

P

4ξ2

ˆ

1 ´ e
´

b

2
3

χ
MP

˙2

. (2.21)

The potential (2.21) is valid for the region χ ą 0, which is relevant for inflation7. This
form of the Higgs inflationary potential was first studied in [Bezrukov and Shaposhnikov,
2008] and is plotted in Figure 2.2. Notice that the flat region consistent with slow-roll
inflation is achieved for large field values.

Figure 2.2: The Higgs inflationary potential (2.21) [Bezrukov and Shaposhnikov, 2008].

To quantitatively check weather this model can successfully achieve slow-roll inflation,
we develop the usual analysis in terms of the slow-roll parameters. Therefore, substituting
the potential and its derivatives into (1.26), we get

ϵ “
4

3
pe

?
2
3

χ
MP ´ 1q

´2
“

4M4
P

3ξ2h4

η “
4

3

p2 ´ e
?

2
3

χ
MP q

e
?

2
3

χ
MP ´ 1

2

“ ´
4M2

P

3ξh2
.

(2.22)

The slow-roll conditions tϵ, ηu ! 1 translate to the field regime during inflation, which is
χ "

?
6MP , or, equivalently, h " MP {

?
ξ. As always, we can find the field value at the

end of inflation by making ϵ » 1, corresponding to hend » p4{3q1{4MP {
?
ξ » 1.07MP {

?
ξ.

The inflationary e-fold number, which quantifies the expansion from horizon crossing of

7As discussed in [Garcia-Bellido et al., 2009], the conformal transformation is ill-defined for negative
field values.
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a given scale to the end of inflation, is given in terms of the potential according to (1.28):

Nk “

ż h0

hend

1

M2
P

V

dV {dh

ˆ

dχ

dh

˙2

dh »
3

4

h2
0 ´ h2

end

M2
P {ξ

. (2.23)

The authors in [Bezrukov and Shaposhnikov, 2008] fixed the number of e-folds to
Nk “ 62, which is associated with the horizon crossing of the largest scales probed by
the COBE satellite. Thus, by also having hend we can derive h0 from the above integral
as being h0 » 9.4MP {

?
ξ. With the field value at horizon crossing, we can impose the

normalization condition for the amplitude of the primordial power spectrum. Hence,
importing the expression (1.35), we have:

V˚

ϵ˚

“ 24π2M4
PAS » p0.027MP q

4 . (2.24)

Recall that the subscript ˚ refers to the horizon crossing moment. Solving for V˚{ϵ˚, in
terms of the h field, we get

V˚

ϵ˚

»
3λh4

0

16

ùñ
3λh4

0

16
» p0.027MP q

4 ,

(2.25)

where in the last equality we substituted (2.24). Inserting hend » p4{3q1{4MP {
?
ξ »

1.07MP {
?
ξ into (2.23) we get h0 »

4MP

3

b

Nk

ξ
, which we can substitute back into (2.25)

to get

ξ »

c

λ

3

Nk

0.0272
» 49000

?
λ “ 49000

mH
?
2v

, (2.26)

with mH “
?
2λv being used in the last equality. As the authors in [Bezrukov and

Shaposhnikov, 2008] noticed, concerning Higgs inflation, expression (2.26) relates the
non-minimal coupling parameter, which is necessary to reproduce a viable inflationary
expansion in the early Universe, to the Higgs mass, which is a well-measured parameter at
low energies. Using mH « 125.35 GeV and v « 246 GeV, we get ξ « 1.8ˆ104, supporting
our ξ " 1 approximation. As far as the inflationary observables are concerned, we can
readily compute the spectral index nS “ 1 ´ 6ϵ˚ ` 2η˚ « 0.97 and the tensor-to-scalar
ratio r “ 16ϵ˚ « 0.0033, for Nk “ 60, corresponding to the scale k “ 0.002 Mpc´1. As
an initial result, the above potential does in fact satisfies CMB requirements, as shown in
Figures 2.3 and 2.4.

An objection that one might make regarding the suitability of the tree-level (classical)
potential (2.21) for inflation is weather quantum corrections would be important at such
high energies. In fact, the authors in [Bezrukov and Shaposhnikov, 2008] did consider
this possibility. Whatever radiative corrections may arise, it is important that they do
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Figure 2.3: Contour intervals for the WMAP allowed region for nS and r, assuming 50
and 60 e-folds [Bezrukov and Shaposhnikov, 2008].

Figure 2.4: 68% and 95% Planck confidence levels in the nS ´ r plane, as well as the
prediction for several inflationary models [Akrami et al., 2020].

not spoil the flatness of the potential during inflation, which would doom its success
in reproducing the observed values of the spectral index and the tensor-to-scalar ratio.
They also argue that the quantum corrections to the tree-level potential would come in
two qualitatively different types. First, one can think about quantum gravity corrections.
Those would be proportional to the energy density of the field, which is of the order
ρχ „ VEpχq{M4

P „ λ{ξ2. For large ξ required by observations, those terms are suppressed.
Another kind of corrections are those induced by the coupling between the Higgs field and
the other SM degrees of freedom8. In the one-loop approximation, these terms have the

8The authors in [Bezrukov and Shaposhnikov, 2008] also discuss corrections arising from the running
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general structure9:

∆V pχq „
m4pχq

64π2
ln

m2pχq

µ2
, (2.27)

where mpχq is the mass of a given SM particle in the χ´background and µ is a renor-
malization scale - to be discussed in the next Chapter. The masses of those fields get
rescaled under the conformal transformation according to m̃pχq “ mpχq{Ωpχq „ 1{

?
ξ,

according to (2.14). Note that in the large-coupling regime (ξ " 1), the contributions
in (2.27) become small and actually independent of χ. However, it was pointed out in
[Barvinsky et al., 2008], that the true contributions of the corrected potential in the action
are accompanied by a factor of

?
´g̃ “ Ω4pχq

?
´g. This has the effect that, if the correc-

tions are computed in the Einstein frame, they are much weakly suppressed, proportional
to the logarithm of the conformal factor. This raises the question of what frame is the
most suited to compute the radiative corrections to the potential10. In this sense, the
corrections can be computed according to prescription I (Einstein frame) or prescription
II (Jordan frame) [Rodrigues et al., 2021]. It is argued in [Barvinsky et al., 2008] that
prescription I is the most natural choice in order to relate the inflationary dynamics to low
energy scales, since physical (atomic) clocks measure proper times that are related to the
original Jordan frame metric. Nevertheless, without an ultraviolet completion of the SM
coupled to gravity at hand, it is still difficult to judge from first principles which frame
is more appropriate to compute quantum effects. In any case, since the quantum correc-
tions during inflation ought to be small for the purpose of preserving the flatness of the
potential, we expect that the results do not depend strongly on the choice of prescription.
Although small, those radiative terms are useful to relate the inflationary requirements
of the model to the electroweak observables measured at low energies, as we will discuss
in the next Chapter.

of the non-minimal coupling ξ but those turn out to be negligible during inflation as well.
9We will indeed discuss similar one-loop corrections in the next chapter.

10Since the theory is not conformally invariant, the renormalization procedure yields results that possess
a weak logarithm frame dependence.



Chapter 3

Non-Minimal Radiative Higgs Inflation

Having discussed the general non-minimal model of Higgs inflation in the previous
Chapter, we now focus on a particular modification of the inflationary potential, featuring
the inclusion of radiative corrections. In order to do that, we have to briefly discuss one of
the greatest achievements of theoretical physics in the 20th century, the quantum theory
of fields.

The development of quantum field theory (QFT) through the 1930s and 1940s was
marked by a constant battle with infinities in the evaluation of amplitudes of several
processes [Pais, 1986]. Those calculations, at higher orders in perturbation theory, were
plagued by integrals that diverge when the internal momenta are too high. The salvation
came when the pioneers of QFT admitted their ignorance: the theory should not be
presumably valid to arbitrarily high energies. This reasoning motivated the advent of
regularization schemes, such as the introduction of a cutoff in the calculation of divergent
integrals, allowing the infinities to be identified1. Then, the renormalization program was
able to remove such infinities by adding counterterms to the lagrangian, rendering the
theory finite and predictive. That was, of course, a major step in establishing QFT as
the framework for describing interactions among elementary particles.

3.1 The Effective Potential

One of the consequences of the renormalization procedure is that the constants of a
renormalized theory are not actually constants. In order to relate renormalized ampli-
tudes of processes occurring at different energy regimes, masses and coupling constants,
for example, must also depend on the energy scale. The equations that govern the be-
haviour of the - now called - running couplings are collectively called Renormalization
Group Equations (RGE) - see Section 3.4. Therefore, the Higgs potential showed in (2.3),

1Regularization schemes, such as Pauli-Villars regularization and dimensional regularization, allow
one to identify the divergent terms in the calculation of loop diagrams of Green functions [Pascual and
Tarrach, 1984].

35
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which depends on the couplings µ and λ, must receive extra terms coming from the renor-
malization procedure, which we call quantum (or radiative) corrections.

One way to include such terms is to work with the effective potential, which includes
in the tree-level (or zero-order) lagrangian quantum corrections up to a given order in per-
turbation theory. To leading order, the effective potential for a scalar field with potential
V pϕq reads [Zee, 2003]

Veffpϕq “ V pϕq ´
i

2

ż

d4k

p2πq4
ln

ˆ

k2 ´ V 2pϕq

k2

˙

. (3.1)

This is the Coleman-Weinberg potential [Coleman and Weinberg, 1973]. It encodes the
first quantum corrections, also called one-loop order, to the potential energy of the back-
ground field ϕ, due to the emission and absorption of virtual particles [Sher, 1989]. The
integral in (3.1) is an example of a divergent integral, mentioned earlier. It turns out
that it has a quadratic and a logarithmic divergence when the integrated momenta go to
arbitrarily large values. Thus, we include two counterterms and integrate up to a cutoff
Λ:

Veffpϕq “ V pϕq ´
i

2

ż Λ d4k

p2πq4
ln

ˆ

´k2 ` V 2pϕq

´k2

˙

` Bϕ2
` Cϕ4

“ V pϕq `
Λ2

32π2
V 2

pϕq ´
1

64π2
rV 2

pϕqs
2 ln

„

Λ2

V 2pϕq

ȷ

` Bϕ2
` Cϕ4 .

(3.2)

Hence, if V pϕq is at most a fourth order polynomial, V 2pϕq and rV 2pϕs2 are, respectively,
quadratic and quartic in ϕ, meaning that they are precisely canceled by the two coun-
terterms. Therefore, we work with the massless scalar potential (2.3), given that, at the
inflationary regime of interest, at high field values h " v, we can safely ignore the mass
term. Thus, substituting V pϕq “ λ

4
ϕ4 in the above expression, yields

Veffpϕq “
λ

4
ϕ4

`
3Λ2

32π2
λϕ2

`
3λ2

128π2
ϕ4 ln

ˆ

ϕ2

Λ2

˙

` Bϕ2
` Cϕ4 . (3.3)

Note that the second and third terms precisely contain the quadratic and logarithmic
divergence when Λ is taken to infinity. They can be removed by carefully fixing the coef-
ficients B and C, which amounts to imposing renormalization conditions on the effective
potential. In the original massless potential, V pϕq “ λ

4
ϕ4, we had d2V

dϕ2 |ϕ“0 “ 0. In order
to keep with a (renormalized) massless theory, we have to impose d2Veff

dϕ2 |ϕ“0 “ 0. This
fixes the first constant B “ ´ 3Λ2

32π2λ. Accordingly, in the classical potential, the quartic
coupling is given by d4V

dϕ4 “ 6λ. However, since d4Veff
dϕ4 depends on lnϕ, we cannot evaluate it

at ϕ “ 0. Thus, we set the second renormalization condition at an arbitrary high-energy
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scale µ, as d4Veff
dϕ4 |ϕ“µ “ 6λpµq, where λpµq is the renormalized quartic coupling, given by

d4Veff

dϕ4

ˇ

ˇ

ˇ

ϕ“µ
“ 6λ ´

9λ2

16π2
ln

ˆ

Λ2

µ2

˙

`
75λ2

32π2
` 24C “ 6λpµq . (3.4)

From (3.4), we can read off the second counterterm as C “ 1
4
rλpµq ´ λs `

3λ2

128π2

”

ln
´

Λ2

µ2

¯

´ 25
6

ı

. Substituting B and C back into (3.3) we obtain

Veffpϕq “
λ

4
ϕ4

`
3λ2

128π2

„

ln

ˆ

ϕ2

µ2

˙

´
25

6

ȷ

ϕ4 , (3.5)

where the quartic coupling is now renormalized at a given scale λpµq. We also highlight
that, as expected, the effective potential has lost its dependence on the cutoff Λ.

Although it seems that the effective potential has a dependence on the scale µ, we
can absorb it in the renormalized coupling λpµq. Therefore, if we had chosen a different
renormalization scale µ1, we would have obtained the same potential with a new coupling
λpµ1q. In fact, we can express the variation of the coupling with the scale by demanding
that µdVeff

dµ
“ 0, which gives [Zee, 2003]

µ
dλpµq

dµ
“

3λ2pµq

16π2
“ βλpµq , (3.6)

with βλ being the quartic coupling’s beta-function, which measures the variation of the
coupling with the renormalization scale. Substituting βλ back into (3.5) and performing
the field redefinition lnph2

µ2 q “ ln ϕ2

µ2 ´ 25
6

to remove the constant terms in the logarithm,
we get

Veffphq “
λ

4
h4

`
βλ

4
h4 ln

ˆ

h

µ

˙

. (3.7)

The potential (3.7) was derived by considering a simple scalar field. In the context
of the Higgs in the SM, one has to account for the coupling of the Higgs with other
particle species, which makes the renormalization procedure somewhat more involved.
Nonetheless, the resulting effective potential recovers the general structure of (3.5), with
the effective coupling λpµq encoding the contributions from the relevant running couplings
of the electroweak model [Sher, 1989]. Also, it is mentioned in [Rodrigues et al., 2021]
and references therein, that the Higgs quartic coupling and its beta-function holds only a
weak dependence on the renormalization scale µ at high energies. Thus, we can use the
expression (3.7) as an approximation for the Higgs effective potential:

Veffphq «
λ

4
h4

ˆ

1 ` a1 ln
h

MP

˙

, (3.8)
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where MP is the high energy scale around which the approximation (3.8) is valid. An
important parameter in our analysis is a1 ”

βλ

λ
, since it quantifies the deviation from the

tree-level potential. Therefore, the above expression can be interpreted as a generaliza-
tion of the quartic potential used in the non-minimal model of (2.11), where radiative
corrections, computed in the Jordan frame, are included.

3.2 Slow-Roll Analysis

As usual in non-minimal models of inflation, we apply the set of transformations (2.12)
and (2.16) in order to check the suitability of the potential (3.9) as a model for single-field
slow-roll inflation. Therefore, the effective potential in the Einstein frame reads

Veffpχq «
λM4

P

4ξ2

ˆ

1 ´ e
´

?
2
3

χ
MP

˙2 ˆ

1 ` a1 ln

c

1

ξ
e
?

2
3

χ
MP ´

1

ξ

˙

. (3.9)

In a similar fashion to what was done in the last Chapter with the standard non-
minimal Higgs inflation, we can compute the spectral index and tensor to scalar ratio for
the potential (3.9) according to the expressions showed in (1.35). As always, note that the
slow-roll parameters are evaluated at the horizon crossing moment which is determined
once the number of e-folds during inflation is specified. Extending the results of [Rodrigues
et al., 2021], we perform the calculation for Nk “ 50, 55, 60. The results are presented in
Figure (3.1).

The curves represent a range of the radiative parameter from ´0.1 (lower limit) to
1.0 (upper limit)2, for each number of e-folds. Note that there is a significant dependence
of the inflationary predictions with the amount of expansion during inflation, achieving
compatibility with the Planck result3. We will indeed perform a more detailed analysis
for a wider range of e-folds in the next Section. It is also important to mention that the
results obtained for the prediction of inflationary parameters are highly independent of
the parameter ξ, once the strong-coupling regime is assumed.

3.3 Varying e-fold Number and Reheating Analysis

The number of e-folds during inflation is not a free parameter entirely, as it is tied
to the subsequent evolution of the Universe, given its association with the horizon exit
of relevant cosmological scales. As mentioned in Chapter 1, the relevant scales probed
by Planck seem to correspond to an interval of 50-60 e-folds, which guides our range of

2The values of a1 varying between [-0.010, 0.053], [-0.020, 0.036] and [-0.027, 0.023], corresponding to
Nk “ 50, 55 and 60, respectively, are in agreement with the 95% C.L. Planck result [Aghanim et al.,
2020a].

3This agreement relies on the slow-roll approximations for the inflationary parameters and the phe-
nomenological power-law expansion of the primordial power spectrum.
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Figure 3.1: ns vs. r for Nk “ 50, 55 & 60. The points in each curve indicate the parameters
for a null resultant of the radiative corrections (a1 “ 0). The blue areas show the favored
regions by Planck 2018, with 68% and 95% confidence level (Planck TT, TE, EE + lowE
+ lensing + BK15 + BAO data set) [Aghanim et al., 2020a, Rodrigues et al., 2023].

exploration of the parameter Nk, associated with the horizon exit of the chosen pivot scale
k “ 0.05 Mpc´1.

In order to constrain the model with cosmological data, we develop the method-
ology exploited in [Rodrigues et al., 2021], which was also used in [Rodrigues et al.,
2023]. Thus, we consider the standard values for most of the cosmological parameters,
namely, the the physical baryon density, ωb, the physical cold dark matter density, ωc,
the optical depth, τ , and the angular diameter distance at decoupling, θ. However, we
do not consider the usual parametrization of the primordial power spectrum, in terms of
the amplitude of scalar perturbations, AS, and the spectral index, nS, even though, as
we have seen in Chapter 1, they are closely related to the inflationary potential in the
slow-roll approximation. Instead, we modify the Boltzmann solver Code for Anisotropies
in the Microwave Background (CAMB), according to the specifications of ModeCode,
which allows the computation of the primordial power spectrum directly in terms of the
inflationary potential, without needing to resort to the power-law parametrization. This
has the advantage of replacing the usual cosmological parameters AS and nS with the
parameters of the potential ξ and a1, where the latter is free to vary4.

In addition, we perform a MCMC analysis to estimate the parameters of the model

4Since the results are highly independent of ξ once the strong-coupling regime is assumed, we choose
ξ “ 1000 for the numerical calculation.
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with the CosmoMC package and a combination of early- and late-time data5. Since we are
interested in relating our results with the electroweak scale via an estimation of the top
quark mass (see Section 3.4), the main focus of our analysis is in the radiative parameter
a1. Note that the potential (3.9) is dependent on the parameters λ, ξ and a1. Therefore,
we can use the expression for the measured amplitude of primordial perturbations (1.35)
as a constraint equation in order to express λpξ, a1q. Thus, by fixing the non-minimal
coupling parameter, our analysis returns an unique value for a1. Figure (3.2) shows the
derived constraints on the most significant parameters of our analysis for Nk in the 50´60

range. In order to narrow our range of exploration of the parameter Nk, we can perform

Figure 3.2: Constraints for fixed Nk at 68% C.L. using the Planck TT, TE,EE ` lowE `

lensing ` BICEP2{Keck ` BAO ` Pantheon combination [Rodrigues et al., 2023].

a general reheating analysis with the tools we developed in Section 1.1.3. At first, we can
analytically explore the behavior of the potential (3.9) at different field values, obtained
when the inflaton evolves from deep in the inflationary epoch into the reheating stage.
To this end, we closely follow the steps developed in [Bezrukov et al., 2009]. First, note
that for field values χ ă χe „ MP , immediately after the end of inflation, we can expand
the exponentials in (3.9) according to: e

?
2
3

χ
MP « 1 `

b

2
3

χ
MP

. Under this approximation,
we can rewrite the potential as

VEpχq «
λM2

P

6ξ2
χ2

„

1 `
a1

4
ln

ˆ

2

3ξ

χ2

M2
P

˙ȷ

. (3.10)

Therefore, apart from a small logarithmic correction proportional to the radiative
parameter, the potential is approximately quadratic right at the end of the inflationary
regime. As discussed in Section 1.1.3, this is characteristic of the preheating stage, where
strong coherent oscillations of the inflaton condensate are expected to happen. Also, we
previously pointed out that a polynomial potential of the type V pχq9χn is associated with
an effective equation of state parameter w “ n´2

n`2
. Thus, the quasi-quadratic potential

5We use the CMB Planck (2018) likelihood [Aghanim et al., 2020b], using Plik temperature power
spectrum, TT, and HFI polarization EE likelihood at ℓ ď 29; BICEP2 and Keck Array experiments
B-mode polarization data [Ade et al., 2018]; BAO measurements from 6dFGS [Beutler et al., 2011],
SDSS-MGS [Ross et al., 2015], and BOSS DR12 [Alam et al., 2017] surveys, and the Pantheon sample of
Type Ia supernovae [Scolnic et al., 2018].
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after expansion induces an expansion of the cosmos as if it is dominated by a matter-like
fluid. Let us assign to this initial state a duration of N1 e-folds, with equation of state
parameter w1 « 0.

To proceed for smaller field values, note that the transformation law between the scalar
fields in the Jordan and Einstein frames, (2.16), can be rewritten in the large-coupling
approximation (ξ " 1) as

dχ

dh
«

g

f

f

e

1 ` 6ξ2 h2

M2
P

p1 ` ξ h2

M2
P

q2
«

g

f

f

e

1 ` h2

h2
cr

p1 ` 2
3ξ

h2

h2
cr

q2
, (3.11)

where we have defined hcr ”

b

2
3
MP

ξ
. For h ą hcr, we recover the χphq expression of (2.19)

by direct integration of (3.11). For h ă hcr, we obtain the simple relation dχ{dh « 1,
which implies that h „ χ and we can use (2.17) to write

VEpχq “
VJphq

Ω4phq

“
1

p1 ` ξ h2

M2
P

q2

λ

4
h4

«

1 `
a1

2
ln

ˆ

h

MP

˙2
ff

“
1

p1 ` 2
3ξ

h2

h2
cr

q2

λ

4
h4

«

1 `
a1

2
ln

ˆ

h

MP

˙2
ff

«
λ

4
χ4

«

1 `
a1

2
ln

ˆ

χ

MP

˙2
ff

.

(3.12)

In the last step, we again used the h ă hcr and h „ χ approximations. Note that the
potential becomes approximately fourth-order in the field χ, associated with a Universe
expansion dominated by a radiation-like fluid component. To this later stage, we assign
a duration of N2 e-folds with equation of state parameter w2 « 1{3.

Therefore, we can summarize the different behaviors for the potential for distinct field
regimes according to:

VEpχq «

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

λM4
P

4ξ2

ˆ

1 ´ e
´

?
2
3

χ
MP

˙2
˜

1 ` a1 ln

c

1
ξ
e
?

2
3

χ
MP ´ 1

ξ

¸

, χ ą χe

λM2
P

6ξ2
χ2

”

1 ` a1

4
ln

´

2
3ξ

χ2

M2
P

¯ı

, χcr ă χ ă χe

λ
4
χ4

„

1 ` a1

2
ln

´

χ
MP

¯2
ȷ

, χ ă χcr ,

(3.13)

where χe „ MP and χcr ”

b

2
3
MP

ξ
. Again, we assign to each regime of the potential an

effective equation of state parameter of winf “ ´1, w1 « 0 and w2 « 1{3.
Thus, we have the picture of a reheating stage divided into a matter- and radiation-like
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expansion periods. Therefore, we have to slightly modify the matching equation (1.44)
in order to replace the unknown global reheating equation of state parameter wreh with
the known w1 “ 0 and w2 “ 1{3. To this end, we follow the procedure outlined in [Gong
et al., 2015]. The splitting of the number of e-folds during reheating into Nreh “ N1 `N2

has the effect of modifying the expression (1.38) according to:

ln

ˆ

k

a0H0

˙

“ ´Nk ´ N1 ´ N2 ´ NRD ` ln

ˆ

aeqHeq

a0H0

˙

` ln

ˆ

Hk

Heq

˙

. (3.14)

Analogously to what was done in Section 1.1.3, the e-fold numbers for the first and second
reheating stage can be expressed as N1 “ 1

3p1`w1q
ln

´

ρend

ρcr

¯

and N2 “ 1
3p1`w2q

ln
´

ρcr
ρreh

¯

,
where ρcr is the energy density of the cosmic fluid at the transition time between matter
and radiation dominance during reheating, associated with the field value χcr. We can
further manipulate N2 to find an useful expression:

N2 “
1

3p1 ` w2q
ln

ˆ

ρcr
ρreh

˙

“
1

3p1 ` w2q
ln

ˆ

ρcr
ρend

ρend
ρreh

˙

“
1

3p1 ` w2q

„

ln

ˆ

ρcr
ρend

˙

` ln

ˆ

ρend
ρreh

˙ȷ

.

(3.15)

Therefore, the combination ´N1 ´ N2 appearing in (3.14) can be rewritten as

´N1 ´ N2 “
1

3p1 ` w1q
ln

ˆ

ρcr
ρend

˙

´
1

3p1 ` w2q

„

ln

ˆ

ρcr
ρend

˙

` ln

ˆ

ρend
ρreh

˙ȷ

“

„

1

3p1 ` w1q
´

1

3p1 ` w2q

ȷ

ln

ˆ

ρcr
ρend

˙

´
1

3p1 ` w2q
ln

ˆ

ρend
ρreh

˙

.

(3.16)

Note that the last term in (3.16) is precisely the definition of Nreh in (1.39) with wreh

replaced by w2. Hence, if we substitute (3.16) into (3.14) we arrive at

ln

ˆ

k

a0H0

˙

“ ´ Nk ´ Nreh

ˇ

ˇ

w2
´ NRD ` ln

ˆ

aeqHeq

a0H0

˙

` ln

ˆ

Hk

Heq

˙

`

„

1

3p1 ` w1q
´

1

3p1 ` w2q

ȷ

ln

ˆ

ρcr
ρend

˙

.

(3.17)

This last expression is exactly the matching equation (1.38) with wreh Ñ w2 and an
additional term. We can perform the same steps of Section 1.1.3 to derive the analog of
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equation (1.44):

Nk “
´1 ` 3w2

4
Nreh ´ ln

˜

V
1{4
end

Hk

¸

` 61.55 `

„

1

3p1 ` w1q
´

1

3p1 ` w2q

ȷ

ln

ˆ

ρcr
ρend

˙

“
1 ´ 3w2

12p1 ` w2q
ln

ˆ

ρreh
ρend

˙

´ ln

˜

V
1{4
end

Hk

¸

` 61.55 `

„

1

3p1 ` w1q
´

1

3p1 ` w2q

ȷ

ln

ˆ

ρcr
ρend

˙

,

(3.18)

where in the last equality we used Nreh “ 1
3p1`w2q

ln
´

ρend

ρreh

¯

.
Now, substituting the equation of state parameters w1 “ 0 and w2 “ 1{3, and using

N1 “ 1
3
ln

´

ρend

ρcr

¯

, we finally arrive at

Nk “ ´
1

4
N1 ´ ln

˜

V
1{4
end pa1q

a

V˚pa1q{3

¸

` 61.55 . (3.19)

We have also used the background equation to approximate Hk „
a

V˚{3, valid at the
horizon crossing moment during inflation, and we highlight the a1 dependence of the po-
tential.

Let us now pause for a moment to interpret this last result. Based on the behav-
ior of the scalar field potential at different field regimes, we have effectively exchanged
the unknown expansion of the Universe during reheating to an initial matter-dominated
expansion, parameterized by the e-fold number N1. The price to pay is that the later
radiation-dominated stage of reheating gets confused with the actual onset of the Hot Big
Bang evolution, which is also dominated by radiation. For our purposes of constraining
the number of e-folds during inflation, this distinction will turn out to be harmless.

Thus, although the details of the physical processes that took place during the reheat-
ing epoch are highly obscure, one can attempt to constrain this period observationally.
With equation (3.19), we can relate the inflationary e-fold number probed in our analysis
with the duration of the initial matter-dominated reheating stage, quantified by N1. A
plot of (3.19), with each value of a1 coming from a Monte Carlo Markov Chain (MCMC)
analysis, is made in Figure (3.3).

Note that for a number of e-folds during inflation of „ 56 or greater, N1 would have
to be negative in order to satisfy the matching condition (3.19), implying in a contrac-
tion of the Universe during the initial matter-dominated period of reheating. Therefore,
we regard those values as non-physical. Hence, in the context of the non-minimal Higgs
inflation scenario, we infer a maximum number of inflationary e-folds that results in an
instantaneous transition to the radiation-dominated expansion. According to Table 1,
Nk “ 56 is associated with a radiative parameter of approximately a1 “ 0.022 ˘ 0.015.
We will explore further consequences of this value of the inflationary e-fold number in the
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Figure 3.3: Nk vs. N1 for each inflationary number of e-folds taken into consideration.
N1 is given by the matching equation (3.19), with a1 coming from the MCMC analysis
(highlighted beside each point). Through a linear regression between the points (solid blue
line), we estimate a maximum number Nk - where the transition to a radiation-dominated
Universe happens instantaneously [Rodrigues et al., 2023].

following Sections.

3.4 Constraints on the Top Quark mass

We are now in position to link our results to the electroweak scale. This can be
interpreted as a consistency test for the inflationary constraints on the Higgs potential,
namely on the radiative parameter a1. The chosen quantity for comparison will be the top
quark pole mass, due to the inherent uncertainties in its Monte Carlo mass reconstruction
[Butenschoen et al., 2016]. Then, we can compare our assessment with the latest inferred
values from low-energy physics.

Our method’s main tool will be the Renormalization Group Equations [Sher, 1989].
As briefly discussed in the beginning of this Chapter, those equations are intrinsically
connected with the non-dependence of physical quantities with energy scales, which, in
turn, make the parameters of a given theory - such as masses and coupling constants -
functions of energy. We can start our quantitative analysis by considering a generalization
of the potential (3.5), where the Higgs effective potential now depends on several other
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couplings λi as well as on the renormalization scale: Veffph, λi, µq. Thus, applying the
chain rule to µdVeff

dµ
“ 0, we get

ˆ

µ
B

Bµ
` βi

B

Bλi

´ γ
B

Bh

˙

Veff “ 0 , (3.20)

where βi ” µBλi

Bµ
are the β-functions for the relevant coupling constants and γ ” ´

µ
h
dh
dµ

the Higgs field anomalous dimension.
The set of partial differential coupled equations (3.20) determine the flow of the pa-

rameters of the potential Veff as a function of the renormalization scale µ, according to
the symmetries and particle content of the theory. For the SM, we are particularly inter-
ested in the flow of the Higgs quartic coupling λ, the top quark Yukawa coupling yt, the
electroweak g and g1 gauge couplings and the strong gS gauge coupling6. Naturally, a set
of differential equations for the relevant parameters require a set of contour conditions.
Following the standard approach, we fix the gauge couplings g and g1 to its central values
at the electroweak scale. Therefore, according to [Zyla et al., 2020], we obtain their values
in the MS renormalization scheme as being:

gpµ “ mZq “
a

4παem sin2 θW “ 0.651784

g1
pµ “ mZq “

a

4παem cos2 θW “ 0.35744 ,
(3.21)

with αem “ 1{137 being the electromagnetic fine-structure constant. As for λ, yt, and
gS, higher order threshold corrections are needed at the weak scale, given the magnitude
of QCD and top Yukawa interactions [Rodrigues et al., 2021]. We can make use of the
interpolating formulas obtained in [Buttazzo et al., 2013]:

λpµ “ mtq “ 0.12604 ` 0.00206
´ mH

GeV
´ 125.15

¯

´ 0.00004
´ mt

GeV
´ 173.34

¯

ytpµ “ mtq “ 0.93690 ` 0.00556
´ mt

GeV
´ 173.34

¯

´ 0.00042
´ mH

GeV
´ 125.15

¯

gSpµ “ mtq “ 1.1666 ` 0.00314
αSpmZq ´ 0.1184

0.0007
´ 0.00046

´ mt

GeV
´ 173.34

¯

,

(3.22)

where αS is the MS strong coupling7.
With the current global fit of the electroweak precision data as contour conditions and

the two-loop β-functions (Appendix A of [Rodrigues et al., 2021]), we can solve the set of
RGEs. Note that the Higgs and top quark pole masses appear as input parameters of the
contour conditions. For the Higgs boson, we opt to fix its pole mass to the central value

6In principle, we would also need to include the flow of the non-minimal parameter ξ. However, as
was the case for the slow-roll analysis, our main results will only show a mild dependence to a specific
value of ξ, once the large-coupling regime is assumed. Nevertheless, we will specify the value of ξ when
needed.

7Per [Zyla et al., 2020], we set its central value to αS “ 0.1179 ˘ 0.0010.
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obtained in [Zyla et al., 2020] of mH “ 125.10 ˘ 0.14 GeV. On the other hand, we leave
the top quark pole mass as a free parameter, which shall be determined based on our
cosmological estimation of the radiative parameter a1. Our analysis proceeds as follows.
Note that, once we have solved the RGE for a given value of mt, we will have the values
at µ “ MP of both λ and βλ. Since, per definition, a1 “ βλ{λ, we can tune the top quark
mass mt in order to obtain βλpMP q and λpMP q which, in turn, yields an a1 parameter
consistent with the values given in the cosmological MCMC analysis - see Table (3.2).
In [Rodrigues et al., 2021], the authors performed a thorough investigation for Nk “ 55,
where the main results are plotted in Figure (3.4). In this occasion, it was found that,
in order to reproduce the value of a1pMP q consistent with the MCMC analysis, one must
impose and upper limit of mt ď 170.222 GeV in the solution of the RGEs.

Figure 3.4: Posterior distribution of the MCMC analysis developed in [Rodrigues et al.,
2021] for Nk “ 55. Note that the constraints on the cosmological parameters overlap for
each value of the non-minimal coupling ξ.

In our work [Rodrigues et al., 2023], we had the opportunity to perform a similar
investigation for a wider range of the inflationary e-fold number, while keeping in mind
the upper limit of Nk „ 56, derived from the reheating considerations. In this case,
where the transition to the radiation dominated epoch happens instantaneously, we find
mt ď 170.44 GeV, in order to reproduce the a1 value cited earlier.

The comparison with electroweak measurements is based on two distinct methodolo-
gies. One class of constraints on the top quark mass are obtained from the kinematic
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reconstruction of tt̄ events, where mt is employed in a Monte-Carlo generator in order to
fit the data [Abazov et al., 2004, Abe et al., 1994]. From [Workman and Others, 2022],
the average value for the top quark mass is set to mt “ 172.69 ˘ 0.30 GeV, obtained
from LHC and Tevatron data. If contrasted with the limit on mt from our cosmological
analysis, this represents a significant discrepancy of « 7.5σ.

Instead, one may consider the inference of the top quark pole mass on measurements
of the cross-section of the top quark production, since the theoretical computation of
σptt̄q is explicitly performed in a particular renormalization scheme (e.g., MS) [Langen-
feld et al., 2009]. In this case, the average value, obtained from the Tevatron and LHC
runs, is mt “ 172.5 ˘ 0.7 GeV [Workman and Others, 2022], lowering the discrepancy
with our cosmological estimate to « 3σ. More recently, the CMS collaboration reported
mt “ 170.5 ˘ 0.8 GeV, obtained from the differential cross-section of top production
[Sirunyan et al., 2020]. Such result perfectly agrees with the results of our cosmological
analysis of Higgs Inflation.

3.5 Breaking the H0 ´ σ8 Correlation

In Chapter 1, we highlighted some ongoing tensions involving important parameters of
ΛCDM Cosmology, in light of distinct early- and late-time cosmological surveys. Perhaps
the most important discrepancy between observational results is the disagreement on the
Hubble parameter H0 inferred from the CMB anisotropies and its measured value from
SNIa redshift-distance relation. Also, the clustering parameter on the 8h´1 Mpc scale,
σ8, based on lensing estimation by the Kilo-Degree Survey (KiDS-1000) is currently con-
strained to σ8 “ 0.766`0.024

´0.021 [Asgari et al., 2021], which is higher than expected from CMB
measurements. In addition to the two tensions, these parameters are also correlated, as
discussed in Section 1.2.1. Thus, by increasing the CMB inferred value for H0, for the
sake of lowering the tension with local measurements, we end up increasing the estimation
for σ8, worsening its agreement with local data.

We can ask ourselves how the Hubble constant and the clustering parameter are re-
produced in our analysis as a function of the inflationary e-fold number. The posterior
distributions are shown in Figure 3.5.
Note from the figure and Table 3.2 that both H0 and σ8 decrease from Nk “ 50 until

the turning point at Nk “ 54.5. However, from that e-fold number up to Nk “ 60, σ8

continues to show smaller values while H0 increases. Thus, for Nk ą 54.5, the model
breaks the correlation between the Hubble constant and the clustering parameter, as
also shown in Figure 3.5. In particular, for our limiting case of Nk “ 56, correspond-
ing to an instantaneous transition to the radiation-dominated epoch, the analysis returns
H0 “ 67.94 ˘ 0.45 Km s´1 Mpc´1, reducing the Hubble constant tension to « 3σ from
SNIa measurements [Riess et al., 2022]. Also, the constrained value for the clustering
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Figure 3.5: Confidence levels and posterior distributions for the H0 and σ8 parameters
using the joint data set CMB Planck (2018) + BICEP2 and Keck Array + BAO +
Pantheon SNe Ia sample and considering several values of Nk [Rodrigues et al., 2023].

parameter is at σ8 “ 0.793 ˘ 0.003, which is in full agreement with KiDS-1000 results
[Asgari et al., 2021].



Chapter 4

Conclusions

We started our discussion in Chapter 1 with several aspects of the standard description
of Cosmology, based on the General Theory of Relativity and the Cosmological Principle.
We have seen that the Hot Big Bang model, formulated in terms of a FLRW spacetime,
does not provide a satisfactory explanation for the near homogeneity of large-scale struc-
ture, as well as its superhorizon correlations, primarily manifested in the temperature
distribution of the CMB. Thus, one is motivated to postulate an initial period of expan-
sion where the comoving Hubble horizon decreases, so that scales that are apparently out
of causal contact now could have in fact communicated with one another early on. This
conjecture, called Cosmological Inflation, dynamically explains most of the shortcomings
of the Big Bang model and has received continuous observational support in the last
decades. We then proceeded to discuss the transition from the inflationary period to the
Hot Big Bang, the reheating stage. Although the details of this period are difficult to
probe observationally, one can attempt to provide a macroscopic description, based on
the reheating number of e-folds, which is related to the duration of inflation and to other
benchmark epochs of cosmic evolution through the matching equation and its variations.
At last, we focused on the current concordance model of Cosmology, the ΛCDM. It was
formulated in the late 1990s and early 2000s, as the result of high-precision measurements
that further supported the existence of cold dark matter and provided solid evidence for
a dark energy component. Currently, this successful paradigm has been facing the ob-
servational challenge of reconciling independent measurements of some of its parameters,
namely the Hubble constant H0 and the clustering of matter σ8.

In Chapter 2 we delved deeper into the realm of Particle Physics, in order to discuss
some well established aspects of our inflaton candidate, the Higgs boson. First, we dis-
cussed the role of the Higgs in the Standard Model, primarily in the Higgs mechanism of
electroweak symmetry breaking and generation of masses for fermions and massive gauge
bosons. Then, we analysed a popular inflationary model of the late 2000s in which the
Higgs is non-minimally coupled to gravity. We performed the slow-roll analysis of the
Einstein frame potential and showed that it provides great agreement with latest CMB
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data.
Finally, Chapter 3 is concerned with our work developed in [Rodrigues et al., 2023].

There, we extend the model of non-minimal Higgs inflation with the inclusion of radiative
corrections. In order to account for quantum effects, we work with the one-loop effective
potential, where the first corrections due to absorption and emission of virtual particles
are included in the scalar field potential energy. We proceed with the usual treatment
of non-minimal inflationary models, with the computation of slow-roll parameters in the
Einstein frame. As an initial analysis, we checked that the potential satisfies the CMB
requirements for the scalar spectral index nS and tensor-to-scalar ratio r, for small ranges
of the radiative parameter a1 and Nk “ 50, 55, 60. In order to more carefully assess the
effects of varying the inflationary number of e-folds, we perform a cosmological MCMC
analysis with a modified spectrum of primordial perturbations, where, instead of the usual
parametrization in terms of AS and nS, we use directly the inflationary potential as an
input, in order to solve the system of Boltzmann equations. This allows us to constrain
the parameters of the potential, mainly, the radiative parameter a1, for each Nk. Then, we
focused on the reheating stage, in order to further constrain our proposed inflationary e-
fold number interval. As expected for successful slow-roll inflation, the subsequent stages
of evolution, during reheating, are dominated by a potential approximately quadratic
and, afterwards, quartic in the scalar field, which reproduces a matter- and radiation-like
dominated expansion, respectively. Thus, by relating the number of e-folds of inflation
to the e-folds of reheating through the matching equation, we obtained an upper limit of
Nk „ 56, in order to have, at most, an instantaneous transition to the radiation-dominated
epoch.

The main result of our work is twofold. First, we opted to develop a consistency check
of the Higgs inflation scenario by relating our cosmological constraints on the radiative
parameter a1, to the electroweak scale, namely, by estimating the top quark mass. To
this end, we solved the Renormalization Group Equations for different values of mt, in
order to obtain λ and βλ near the Planck scale, which could be readily related to a1. For
Nk “ 56, we found mt ď 170.44 GeV. This estimate can be compared with the latest
results from electroweak measurements. Assuming the analysis of tt̄ events from the LHC
and Tevatron team, one finds mt “ 172.69 ˘ 0.30 GeV, representing a 7.5σ discrepancy
with our result. Instead, one can consider the computation of the cross-section of top
quark production, yielding mt “ 172.5˘ 0.7 GeV from LHC and Tevatron runs - lowering
the tension to « 3σ - and mt “ 170.5 ˘ 0.8 GeV from the CMS collaboration - which
agrees with our cosmological estimation. Second, the MCMC analysis with current cos-
mological data reported a breaking of the H0 ´ σ8 correlation for the inflationary e-fold
number larger than 54.5. For the instantaneous transition to the radiation-dominated
epoch, which corresponds to fixing Nk “ 56, the H0 tension is slightly reduced to « 3σ,
while the clustering parameter is constrained at σ8 “ 0.793 ˘ 0.003, consistent with the
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latest weak gravitational lensing measurements.
Therefore, based on the latest particle physics phenomenology results, one cannot

completely rule out the Higgs inflation scenario, as new data from collider experiments
are needed in order to better constrain this hypothesis. Also, the capability of the model
to alleviate ongoing cosmological tensions makes it interesting from the observational
point of view. We hope that novel theoretical and experimental insights in the fields of
Cosmology and Particle Physics come to light in the near future, in an effort to better
investigate the Higgs inflation conjecture and alternatives thereof.
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