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1 Resumo

Modelos do dı́namo solar baseados no mecanismo de Babcock-Leighton obtiveram sucesso

em reproduzir algumas das principais caracterı́sticas da dinâmica do campo magnético do Sol.

No entanto, considerando que tal mecanismo opera somente a partir de um limite mı́nimo do

campo magnético, ele não provê um processo apropriado de regeneração do campo que car-

acterize um dı́namo auto-sustentável. Neste trabalho consideramos a existência de um efeito

α concomitante com o cenário disposto pelo modelo de Babcock-Leighton em uma simulação

numérica 2D de campo médio. Diferentes fatores de limitação de intensidade do campo foram

usados para os dois processos de regeneração do campo poloidal. Excetuando-se o critério

da anti-paridade do campo magnético, as principais caracterı́sticas do campo magnético so-

lar foram reproduzidas: reversão cı́clica, migração ao equador dos intensos campos toroidais

em médias latitudes, deslocamento aos pólos do campo magnético polar na superfı́cie, e a

relação de anti-fase entre ambos. A variabilidade de longo perı́odo resultou em alguns casos

na existência de épocas duradouras de mı́nimo de atividade magnética e posterior recuperação

, como no Mı́nimo de Maunder. Tendo como base a observação de uma atividade residual

durante os perı́odos de mı́nima atividade, sugerimos que tais perı́odos são causados por uma

predominância do efeito α sobre o mecanismo de Babcock-Leighton na regeneração do campo

poloidal.
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2 Abstract

Dynamo models relying on the Babcock-Leighton mechanism are successful in reproducing

most of the solar magnetic field dynamical characteristics. However, considering that such

models work only above a lower magnetic field threshold, they do not provide an appropriate

magnetic field regeneration process characterizing a self-sustainable dynamo. In this work we

consider the existence of an additional α-effect to the Babcock-Leighton scenario in a mean-

field 2D numerical model. Both poloidal field regenerating mechanisms were treated with two

different strength-limiting factors. Apart from the solar anti-symmetric parity behaviour, the

main solar features were reproduced: cyclic reversion, mid-latitudinal equatorward migration

of strong toroidal field, poleward migration of polar surface radial fields, and the anti-phase

relation between both. Long-term variability of the solutions allowed periods of extended

minimum activity and posterior recovery, as the Maunder Minimum. Based on the observation

of a residual activity during minima periods, we suggest they are caused by a predominance of

the α-effect over the Babcock-Leighton mechanism in regenerating the poloidal field.
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3 Introduction

The Sun is a magnetic active star, which undergoes periods of high and low magnetic activ-

ity approximately each 11 years. Its dynamical behavior imposes important consequences to

the terrestrial environment, not only producing magnetic storms, which affect satellite oper-

ation (Baker 2000), but also possibly having an important role in Earth’s climate long-term

variability (Haigh 2003).

By magnetic activity we understand the appearance of sunspots, characterized by their lower

luminosity (in comparison with the overall photosphere) and intense magnetic fields (Solanki

2003). Sunspots usually appear in pairs of opposite polarities roughly aligned with the E-

W direction, what evidences they are the surface manifestations of concentrated azimuthal

magnetic fields (toroidal flux tubes), arising from the deep of the convection zone by magnetic

buoyancy (Parker 1979). It is important to mention that the alignment with the equatorial

direction is not perfect: sunspot pairs often display a systematic tilt, the leading spot being

nearer the equator than the following one - Joy’s law. Sunspots generally appear within a

30o latitudinal band in each side of the equator, displaying opposite polarity configuration in

each hemisphere - Hale’s polarity law. As the activity cycle is initiated, sunspot appearance

migrates towards the equatorial region, and after the end of the 11 years cycle they begin again

to appear at approximately 30o, but with an opposite polarity configuration. This means the

full magnetic sunspot cycle is twice the activity period. Moreover, sunspots cyclic appearance

is directly linked with the variability of the large-scale solar magnetic field: during episodes

of maximum activity, the polar magnetic field undergoes polarity inversion (Makarov et al.

2000).

All such outstandingly well organized features of the dynamical solar magnetic field are sup-

posed to originate from a natural dynamo process, regenerating the magnetic field against
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ohmic dissipation by convective motions of the conducting plasma (Ossendrijver 2003). These

features also indicate the large-scale magnetic field is divided into two main components that

evolve within a phase lag: the toroidal (azimuthal) magnetic field, associated with sunspots,

and the poloidal (meridional) field, represented by the polar field. Despite the regular char-

acter evidenced by the solar cycle, it also undergoes amplitude and frequency fluctuations

(Hathaway 2010). The most striking examples of this variability are the periods of minimum

activity, such as the Maunder Minimum. At such episode, covering the years from 1645 to

1715, sunspots were rarely seen. However, indirect data indicated the persistence, although

weak, of the solar cycle (Beer et al. 1998). Much discussion exists on the cause of this pe-

culiar variability, and how the answers could aid in accessing unconstrained properties of the

solar dynamo mechanism.

Modeling of the solar dynamo has shed light into some of the main process responsible for

the solar cycle (Charbonneau 2010), qualitatively known as the α and ω-effects. The ω-effect

symbolizes the shearing action of the differential rotation of the flow on an initial poloidal field,

giving rise to a toroidal field. Through the advent of helioseismology, the large-scale flow has

been mapped in detail (Schou et al. 1998). The region of strongest angular velocity gradients,

and so the preferred site for the ω-effect, was found to be at the base of the convection zone:

the tachocline (Howe et al. 2000a). Turbulent motions associated with the Coriolis force, in

turn, would twist the toroidal field, generating a new component of the poloidal field and thus

maintaining the solar cycle (Parker 1955). This latter process is now known as the mean-field

α-effect, and unlike the ω-effect, is far from being totally understood, as well as the preferred

place for its action. It is also known that the Lorentz force back-reaction of strong magnetic

fields inhibits turbulence; so the conventional α-effect would not lead to great effectiveness

in regenerating the poloidal field for a strong magnetic field regime (Cattaneo and Hughes

1996). Other processes, like the ones relying on the Babcock-Leighton mechanism, may have
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an important role on the poloidal field regeneration. Differently from the mean α-effect, the

Babcock-Leighton mechanism relies on the diffusion of the sunspots magnetic fields, operating

at the solar surface (Babcock 1961, Leighton 1969).

Numerical 2D models, relying on the longitudinal symmetry of the solar magnetic field, are

widely used as a tool to access the validity of the main effects supposed to drive the solar dy-

namo. Many of the solar features are well reproduced by numerical models, but no agreement

is achieved considering the particular causes. Variability of the solar cycle, for example, is gen-

erally explained by either stochastic forcing (Choudhuri 1992, Charbonneau and Dikpati 2000)

or dynamical nonlinearities (Bushby 2006). Alternatively, simple form of time-delays arising

from the spatial decoupling of the α and ω-effects operation place in the solar convection zone

(like in the Babcock-Leighton case), are also known to modulate the long-term variability of

the solar cycles (Jouve et al. 2010; Wilmot-Smith et al. 2006), sometimes reaching a chaotic

behavior (Charbonneau et al. 2005). In this paper we use a 2D kinematic solar dynamo model

merging concepts of the mean-field theory and the Babcock-Leighton mechanism, accounting

for different magnetic field strength-limiting thresholds, in order to afford solar-like long-term

variability of the solar cycle.
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4 Model formulation

To assess the variability of the magnetic field in the kinematic context of the solar dynamo,

in which the flow field is steady and prescribed, the problem reduces to solving the MHD

induction equation for the magnetic field B

∂B

∂t
= ∇× (U×B)−∇× (ηm∇×B) , (1)

where U is the flow field and ηm the magnetic diffusivity. To a first approximation, the large-

scale magnetic and flow field can be represented as contributions of their large-scale mean

and small-scale fluctuating parts, B = 〈B〉 + b′ and U = 〈U〉 + u′, respectively. Upon

substitution of these quantities in equation (1), and proper averaging, we get the mean-field

induction equation (Moffat 1978), given by

∂〈B〉

∂t
= ∇× (〈U〉 × 〈B〉) +∇× (〈u′ × b

′〉)−∇× ηm∇× 〈B〉, (2)

The term 〈u′ × b′〉 corresponds to a mean electromotive force E arising from the interactions

of turbulent motions with the small-scaled magnetic field. It can be thus written in terms of

a parameterization of the turbulent effects, through the coefficients α and β, on the mean-

magnetic field as E = α〈B〉 − β∇× 〈B〉. Substitution in the mean-induction equation gives

∂B

∂t
= ∇× (U×B) +∇× (αB)−∇× η∇×B, (3)

for which the brackets indicating averaging have been omitted, but are still considered. The α

term represents the magnetic helicity, due to cyclonic motions oriented by the Coriolis force

and η = ηm + β is now the effective magnetic diffusivity, covering both magnetic diffusion at

the microscopic level and turbulent diffusion, respectively.

An additional important issue arises from working within the kinematic context: How to deal
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with the important feedback of the magnetic field modifying fluid motions, via the Lorentz

force? Since the motion equation is not solved, this effect ought to be parameterized in the

induction equation. This must be done in a way so that the growth of the magnetic field is

suppressed above some limiting value, based on the energy equipartion with the turbulent fluid

motions. Generally, in the mean-field context, this quenching factor is heuristically formulated

as a decreasing function of the magnetic field

α(B) =
α0

(

1 +
(

B
Beq

)2
) (4)

Beq being the equipartition magnetic field and α0 a typical value characterizing the α-effect.

Studies of magnetoconvection on the solar interior give Beq ∼ 104G (Fan 2009), and led

to conjectures that a turbulent α-effect would not represent an effective dynamo mechanism

(Cattaneo and Hughes 1996).

Alternatively to the conventional α-effect, Babcock (1961) and Leighton (1969) suggested

that the diffusion of the magnetic field of sunspot pairs played a crucial role on the process of

poloidal field regeneration. The bipolar sunspot regions are tilted in a way that the magnetic

field of the leading spot, nearer the equator, diffuses and reconnects with the field of the leading

spot at the other hemisphere - which has nearly always an opposite polarity. At the same time,

the magnetic field of the following spot will also decay and connect with the polar magnetic

field, which have opposite polarity. This opposite magnetic field from the following spot will

at some point annihilate the original polarity of the polar region, causing the magnetic polarity

reversion of the initial poloidal field. In this case the poloidal and toroidal fields regeneration

processes are spatially segregated, and a means by which the new polar surface magnetic flux

generated by the Babcock-Leighton mechanism would be transported to the bottom of the

convection zone is necessary. Facing this requirement, initially a meridional circulation flow

was assumed in the Babcock-Leighton dynamo modeling. As a matter of fact, a poleward
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meridional flow is indeed observed at the solar surface (Duvall 1979). Numerical models

comprising on this additional physical ingredient are usually termed flux transport dynamos

and they are usually successful in reproducing the equatorward tendency of the toroidal field

(Küker et al. 2001). In summary, the meridional flow not only acts as a mean of transporting

the polar surface magnetic field down to the base of the convection zone to be transformed into

a toroidal field, but drags the toroidal field towards the equator as well, resulting in a solar-like

magnetic field behavior.

Simulations of the rising of thin magnetic toroidal flux tubes from the base of the convection

zone suggest that for matching the observed tilts, the flux tubes generating sunspots need

to have an initial magnetic field strength ranging from approximately 104 to 105 G. Stronger

toroidal flux tubes tend to arise at the solar surface with almost no tilts, while weaker flux tubes

arrise at too high latitudes (D’Silva and Choudhurri 1993), hence incompatible with Joy’s law.

The Babcock-Leighton mechanism would therefore be dependent on the initial intensity of the

toroidal flux tube at the base of the convection zone, just above the tachocline.

Despite the observational clues provided by the Babcock-Leighton mechanism, much discus-

sion exists on whether this mechanism is the unique responsible for the poloidal field regen-

eration, an active but not unique component of this part of the cycle, or yet a mere side ef-

fect of the whole process. The first possibility is unlikely, since a dynamo based only on

the Babcock-Leighton mechanism is not self-sustainable - it needs the formation of sunspots,

and therefore operates only above critical toroidal magnetic field buoyancy values. A proba-

ble scenario is that an additional α-effect operates on the convection zone, and the resulting

magnetic field is a conjunction of both poloidal field regeneration processes. The three main

dynamo processes here discussed, α and ω-effects and the Babcock-Leighton mechanism are

schematically shown on Figure 1.

Numerical simulations based on the Babcock-Leighton mechanism have the tendency to pro-

duce symmetric solutions relative the equator, opposite to what is observed in the Sun (Chat-
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terjee et al. 2004). Recent results have shown that α-effects located within a thin layer just

above the tachocline are more successful in giving the right antisymmetric solutions (Bonnano

et al. 2008; Dikpati and Gilman 2001). Residual turbulent motions acting on toroidal flux

tubes right above the tachocline, before achieving the critical buoyant value, could justify such

a disposition of the α-effect. This concept is applied in the present model, in addition to the

Babcock-Leighton effect at the solar surface.

Figure 1: Representative scheme of the main processes thought to occur during the solar cy-
cle, departing from (a), an initial poloidal field. (b) and (c) represent the generation of the
toroidal field by differential rotation - the ω-effect. (d1) and (e1) show the effect of cyclonic
turbulence on former toroidal fields, creating small-scale secondary poloidal magnetic fields -
the α-effect. Averaged, they result in a net electromotive force generating a new large-scale
poloidal field (f1), closing the first half part of the cycle with a new poloidal field (g), with
opposite polarity than the initial one. (d2) represents the beginning of the Babcock-Leighton
mechanism: toroidal fields buoyantly rise to the surface forming sunspots, tilted bipolar re-
gions. In (e2), the field from the bipolar region diffuses and reconnects with the correspon-
dents of each hemisphere and with the polar fields. The resulting poloidal flux is advected by
meridional circulation to the poles (f2), generating the final large-scale poloidal field in (g) and
transporting the flux to the tachocline.
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5 Mathematical description

Under the assumption of axisymmetry, the magnetic and flow fields are written in terms of

their poloidal and toroidal components in spherical coordinates (r, θ, t) as

B(r, θ, t) = ∇× (Aφ(r, θ, t)êφ) + Bφ(r, θ, t)êφ (5)

U(r, θ) = up(r, θ) + r sin θΩ(r, θ)êφ (6)

in which Aφ is the poloidal potential and Bφ the toroidal field. The time-independent flow

profile is given by the meridional circulation up and the differential rotation Ω. The poloidal-

toroidal decomposition of the magnetic field allows a separation of the mean induction equa-

tion (3) into two partial differential equations for Aφ and Bφ

∂Aφ

∂t
+

Re

r sin θ
up ·∇ (r sin θAφ) = η̃p

(

∇2 −
1

r2 sin θ2

)

Aφ

+Cαα(r, θ;Bφ)Bφ + CSS(r, θ;B
tc
φ )B

tc
φ (7)

∂Bφ

∂t
+Re r sin θ∇ ·

(

upBφ

r sin θ

)

= η̃t

(

∇2 −
1

r2 sin θ2

)

Bφ

+
1

r

∂η̃t
∂r

∂(rBφ)

∂r
+ CΩ r sin θ (∇× Aφêφ) · (∇Ω) (8)

The appearance of the termsCΩ = ΩeqR2/ηS ,Cα = α0R/ηs,CS = SoR/ηs andRe = uoR/ηs

results from the nondimensionalization process of the equations using the solar radius R as the

characteristic length scale and the effective magnetic diffusion timeR2/ηs as the characteristic

time scale. Btc
φ is the toroidal field just above the tachocline, and Ωeq, αo, So and uo are the

rotation rate at the equator, typical amplitudes of the poloidal terms and the peak velocity of
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the meridional flow at the surface. η̃p and η̃t are the normalized effective magnetic diffusivities

for the poloidal and toroidal components, respectively. Note that the extra α-term that would

arise in equation (8) has been neglected, as it is common in the solar case approximation to

suppose that CΩ >> Cα. The flow specifications, up and Ω are the same as the ones used in

the reference work of Dikpati and Charbonneau (1999), and are shown in the left panels of

Figure 2. The tachocline depth and thickness is still uncertain. In this paper, the tachocline

will comprise the region from the top of the radiative zone, rb = 0.6R, to the top of the region

with the largest radial angular velocity gradient, rt = 0.7R.

Figure 2: Specifications of the model. Left: isocontours of Ω(r, θ) based on analytic fit of
the differential rotation profile from helioseismology data. Center: meridional circulation
streamlines (full line - counterclockwise flow, dotted line - clockwise flow). Right top: poloidal
source profiles. Right bottom: effective magnetic diffusivity profiles.

It is worth noticing that the S term, representing the Babcock-Leighton poloidal regeneration

process at the surface, has been added in an ad-hoc manner to equation (7). Differently from

the α-term, it is non-local - it depends on the toroidal field at the tachocline. This comes

from the latitudinal tilt given by Joy’s law being rather dependent on the initial magnetic field
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strength of the rising flux tube, therefore at the tachocline (D’Silva and Choudhurri 1993).

The α-effect on equation (7) must be suppressed for magnetic field strength above a limiting

value associated with energy equipartition. Therefore, the α-term will be written evoking

expression (4), as

α(r, θ;Bφ) =
1

(

1 +
(

Bφ

Beq

)2
)fα(r, θ) (9)

where Beq = 104 G and fα(r, θ) is a function of spatial coordinates given by

fα(r, θ) =
1

4

[

1 + erf
(

r − r1
d1

)] [

1− erf
(

r − r2
d2

)]

cos θ sin θ (10)

where r1 = 0.675R, r2 = 0.725R and d1 = d2 = 0.01R. This function constrains the α-effect

to a thin layer at the base of the convection zone, just above the tachocline, and to midlatitudes.

Similar conjectures apply for the Babcock-Leighton S source term on equation (7), with the

difference that it works within lower and upper limiting values

S(r, θ;Bφ tc) =
1

4

[

1 + erf
(

B2

φ tc − B2

φ tc min

)] [

1− erf
(

B2

φ tc −B2

φ tc max

)]

fS(r, θ) (11)

Here Bφ tc min = 104 G, Bφ tc max = 105 G and the radial and latitudinal distribution fS(r, θ)

is given by

fS(r, θ) =
1

4

[

1 + erf
(

r − r3
d3

)] [

1 + erf
(

r − r4
d4

)]

cos θ sin θ (12)

where r3 = 0.95R, r4 = 1.0R and d3 = d4 = 0.01R, restricting the Babcock-Leighton

mechanism to the near-surface layers. The poloidal source terms α and S profiles with respect
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to the radial distribution are shown in the right panel of Figure 2.

The effective diffusivities are given following the concept from Chatterjee et al. (2004), in

which they parameterize the effect of turbulent diffusion suppression by separating the diffu-

sivity into poloidal ηp and toroidal ηt components.

ηp = ηc + ηs
1

2

[

1 + erf
(

r − r5
d5

)]

(13)

ηt = ηc + ηcz
1

2

[

1 + erf
(

r − r6
d6

)]

+ ηS
1

2

[

1 + erf
(

r − r7
d7

)]

(14)

in which r5 = 0.7R, r6 = 0.72R, r7 = 0.95R and d5 = d6 = d7 = 0.025R. Such separation

comes from the fact that the toroidal field, at least in deeper layers, tend to be much more

intense than the poloidal field, and therefore more effective in suppressing the turbulent diffu-

sion effects. ηc is the core diffusivity near the radiative zone, ηcz the diffusivity in the turbulent

convection zone associated with the toroidal magnetic field, and ηS the diffusivity in the radial

surface layers and for the weaker poloidal field. They are set in this study to ηc = 5 × 108

cm2/s, ηcz = 1 × 1010 cm2/s and ηs = 3 × 1011 cm2/s. The radial profiles are shown in the

right panel of Figure 2.
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6 Numerical simulation

Given the described physical ingredients, equations (7) and (8) are solved numerically over

a regular grid in an annular meridional plane covering θ ∈ [0, π] and r ∈ [0.6, 1], that is,

from slightly below the tachocline up to the solar surface. The boundary and initial condition

specifications used are the following: the inner boundary condition is set as to represent the

radiative zone as a perfect conductor. An approximation of this condition gives that at r = 0.6,

Aφ = Bφ = 0 (Chatterjee et al. 2004). The outer boundary condition is for a vacuum region,

requesting a smooth match with a potential magnetic field (Dikpati and Charbonneau 1999).

As for the initial condition, a dipolar field confined to the convective envelope is used. In this

case, Aφ = sin θ/r2 for r ≥ 0.7R and zero for all other r, whereas Bφ = 0 for all r.

The solution procedure was performed by an adaptation of the Parody code (Dormy et al.

1998), based on a semi-spectral method. It consists in spherical harmonic expansion for the

angular components of the poloidal and toroidal scalars and finite differences in the radial di-

rection over a full spherical shell. More details on the code are presented in the Appendix. The

results here presented were performed with maximum harmonic degree Lmax = 65, number

of radial points Nr = 65 and a constant time stepping of ∆t = 5× 10−6.
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7 Results

On the basis of helioseismic data (Ωeq = 2π × 460.7 nHz), we fix CΩ = 4.7 × 104; for this

case, variations of the free parameters Cα, CS and Re allow for a broad range of solutions.

Meridional circulation measured at the solar surface at mid-latitudes displays an average value

of 15 m/s. Considering Re varying around this value, from 318 to 378, the minimum config-

uration for a proper dynamo solution consists in approximately Cα = 2 and CS = 0.5. In

order to access the solar representativeness of the solution, some observable aspects should be

matched (Charbonneau 2010):

1. Cyclic polarity reversals with approximately 11 years periodicity;

2. Strong deep toroidal fields (∼ 104 − 105G) at a 30o latitudinal belt migrating equator-

ward;

3. Poleward migration of the polar radial field (∼ 10− 100G);

4. Phase lag of π/2 between the deep mid-latitudinal toroidal and surface polar fields;

5. Antisymmetric coupling of the magnetic fields between the hemispheres;

6. Long-term variability of the solar cycle.

A useful way to analyze the solar semblance of the model results is to display the magnetic

field in a time-latitude map and compare it with proper synoptic magnetograms and sunspot

butterfly diagrams (Hathaway 2010). A reference solution of the model is displayed in this

form in Figure 3, in which the surface polar field contours are superimposed with the grey-

scale map of the toroidal field just above the tachocline (rtc = 0.7R). This case was chosen for

matching most of the observed requisites. Criterion 1, for example: the periodicity associated

with the solar cycle is of 10.95 years. The main dependence of the periodicity resides on

the strength of meridional circulation, a well-known characteristic of flux transport dynamos

(Dikpati and Charbonneau 1999). Using a similar model as the present one, Charbonneau et

al. (2005) observed the persistent dominance of the meridional circulation on setting the cycle
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Figure 3: Butterfly diagram of the dynamo solution corresponding to CS = 1.0, Cα = 8.0
and Re = 318. The grey-scale map represents the toroidal field at the tachocline, whereas
high latitude black and white contours represent the radial field at the solar surface, with a
maximum value of 1700 G.

periodicity even in a chaotic regime of the dynamo, in which the present solutions were found.

The morphology presented in criteria 2 and 3 was also achieved, even though the polar strength

of most of the solutions (peaking 1700 G for the cited case) is an order of magnitude higher

than the observed. A phase lag of approximately π/2 between poloidal and toroidal fields cited

in criterion 4 is also a general property of flux transport Babcock-Leighton models (Dikpati

and Charbonneau 1999).

On the other hand, the parity requisition 5 is still an issue. Although the inclusion of an α-

effect at a thin layer above the tachocline was thought to help yielding anti-symmetric solutions

(Bonnano et al. 2008; Dikpati and Gilman 2001), the parity coupling was not straightforward

in this model case. Actually, it does not seem to exist a clear preferred mode for the solutions:

they vary between periods of symmetric, anti-symmetric and out of phase modes. In the refer-

ence case, as it is noticeable in Figure 3, the activity in both hemispheres was slightly out of

phase. This probably originates from the chaotic nature of the solutions. For higher dynamo

numbers, CS and Cα, there was a tendency for the magnetic fields to evolve independently in

each hemisphere - with no fixed phase relation. Charbonneau et al. (2005) analyzed the gen-

eral chaotic behavior in a Babcock-Leighton dynamo and concluded it is caused by time-delays
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occuring from the spatial decoupling of the toroidal and poloidal field regeneration processes.

Long-term variability commented on item 6 is a clear consequence of such time-delays. Figure

4 displays the evolution of the toroidal magnetic field energy at a certain latitude - toroidal

magnetic field energy is generally used as a proxy for activity cycle amplitude. The chaotic

evolution of the solution is evident, displaying long-term modulations of the solar cycle. In

addition, there are also periods of grand minima, in which the cycle is apparently not fully

developed, but persist with a kind of residual activity.

Figure 4: Time series of the toroidal magnetic energy at the tachocline at 20o latitude for the
reference solution. Apart from the clear modulation of the solar cycle there is also the presence
of an extended period of minimum activity, where supposedly the toroidal magnetic field do
not achieve the critical value for buoyant instability, leading to sunspot forming.

The residual activity episode shown in Figure 4 suggests there are two different regimes for

the solar large-scale magnetic field behavior. Considering we have at hand two different mech-

anisms for the poloidal field regeneration process, this could indicate the predominance of

one relative to the other. Motivated by this thought, we show in Figure 5 the toroidal mag-

netic energy time series of two models, one with only the α-effect at the tachocline and the

other considering only the Babcock-Leighton regeneration process at the solar surface. In the

Babcock-Leighton case, the solar cycle evolution is smooth and tends to display a persistent

weak-strong amplitude bundling configuration (therefore with twice the cycle period). This

resembles the observed solar pattern known as the Gnevyshev-Ohl rule, also a consequence

of the time-delays inherited by the Babcock-Leighton mechanism (Charbonneau et al. 2007).
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The situation is different in the α-effect poloidal source case in which the general amplitudes

of the cycles are much lower, the cycle period is about twice as long, and there are additional

high frequency oscillations over the solar cycles.

Aware of the different behaviors concerning the different poloidal field regeneration processes,

it is possible that the period of minimum activity involves the preponderance of the tachocline

α-effect over the Babcock-Leighton mechanism. In such case, lower initial poloidal fields

would result in the generation of toroidal field below the buoyancy instability limit, leading to

few sunspot formations. The long term solar cycle variability would then mainly be driven by

the tachocline α-effect, generating weak toroidal fields during periods of minimum activity, but

being able to restart the Babcock-Leighton mechanism when the upper threshold of toroidal

field strength is achieved. This situation matches the observable minimum activity periods,

like the Maunder Minimum.

Figure 5: Toroidal magnetic energy at the tachocline at 20o latitude and the respective power
spectra of two different dynamo models: with only α-effect, Cα = 8.0, at the tacholcline
(upper panel) and another with only Babcock-Leighton poloidal source, Cs = 4.0, at the
surface (lower panel). For both cases Re = 378.
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8 Conclusion

In view of the not self-sustainable character of a solar dynamo relying only on the Babcock-

Leighton mechanism for poloidal field regeneration, we have considered an additional α-effect

operating in a thin layer above the tachocline, originating from the turbulent effects on mag-

netic flux tubes just above the critical buoyancy level. Accounting for different limiting ranges

of magnetic field intensity on the operation of each effect (concerning their different natures)

we have managed to obtain a dynamo solution with the basic solar magnetic field dynamic

features, to list: cyclic reversions with a ∼ 11 year periodicity, equatorward migration of the

activity belt, poleward migration of the polar radial field, proper phase lag between both and

long-term variability resembling the solar activity variations.

Antisymmetric coupling of the magnetic field between the hemispheres is still an issue, de-

spite the α-effect at the tachocline being suggested as a way to circumvent the parity problem.

In fact, the hemispheres appear to behave in a rather dissociated way, showing no preferred

relaxation mode. The main reason for the decoupling may come from the chaotic nature of

the solution, making the magnetic field of each hemisphere to evolve independently. Further

investigations on the parity topic are needed, possibly relying in a harmonic analysis of the

variability of the magnetic fields in each hemisphere and comparison with harmonic decom-

positions of the solar surface magnetic field, as in Stenflo and Vogel (1986).

We conclude by suggesting that the grand minima periods characterizing suppressed magnetic

activity could be caused by an intermittent state in the solar dynamo, such that only a deep

and weak α-effect is responsible for the poloidal field regeneration. It thus raises a question on

what would be the reason for the dominance of the α-effect regime over the Babcock-Leighton

mechanism in regenerating the poloidal field.
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10 Appendix

Parody Code - Mean Field Benchmarking
The Parody code used in this work was originally proposed for full 3D MHD dynamo simula-

tions (ACD code, benchmarked in Christensen et al. 2001). The magnetic field is decomposed

in the form

B = ∇×∇× (Bp r) +∇× (Bt r) , (15)

and the scalar potentials further expanded in a spherical harmonics basis, writing

Bp,t =
Lmax
∑

#=1

Mmax
∑

m=0

Bp,t(r, t)
m
# Y (θ,φ)m# . (16)

The radial dependence is treated by a second-order finite-differencing scheme. Time integra-

tion uses a Crank-Nicholson scheme for diffusion terms and an Adams-Bashforth scheme for

the nonlinear terms. The actual equations to be solved are the radial curl and radial curl of

the curled induction equation (1). Further adaptation to the axisymmetric (Mmax = 0) mean-

field scenario considered: changing of the inner boundary condition, flow specification by

differential rotation and meridional circulation, construction of the proper diffusivity profiles

and inclusion of the α and S terms in the induction equation. The original inner boundary

conditions consisted on insulating or electric conductor cases, and the changes considered the

perfect conductor case. Such modification consisted in writing Bp = 0 and ∂(rBt)/∂r at the

inner boundary.

Upon the adaptations, the code was tested by comparing the results with the reference solu-

tions of a mean-field solar dynamo benchmark from Jouve et al. (2008). Such benchmarking

consisted in accessing the critical dynamo numbers of two cases considering an αω mean-field

dynamo (cases A and B, differing only in the different treating of the diffusivity) and one based

on the Babcock-Leighton mechanism (case C), as well as their cycle frequency, and comparing
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them with other code’s results relying on different numerical methods. Table 1 displays the

values obtained from Parody’s adaptation and the reference ones for the cases treated in Jouve

et al. (2008), evidencing a proper matching. The butterfly diagrams for the supercritical cases

(SB and SC), which considers the α-quenching, are displayed in Figure 6.

Table 1: Comparison of the critical dynamo numbers and frequency of the solar cycle with the
benchmark cases A, B and C.

Figure 6: Butterfly diagram summarizing the Benchmark cases. Contours refer to the radial
field at the surface an grey-scale map to the toroidal field at the tachocline. Upper panel: αω
dynamo with from case SB. Lower panel: Babcock-Leighton dynamo from case SC.
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