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Resumo

Tradicionalmente, a tomografia de tempos de primeiras chegadas é tratada como um pro-

blema inverso não-linear que é resolvido através de métodos determińısticos de otimização. Es-

tes métodos minimizam funções-objetivo através do cálculo de suas derivadas. Em alguns pro-

blemas geof́ısicos, os cálculos das derivadas são computacionalmente dispendiosos e os métodos

determińısticos tornam-se ineficazes. Outra limitação inerente aos métodos determińısticos está

na forte relação entre o modelo inicial e o aprisionamento das soluções em mı́nimos locais. Para

contornar essas limitações, nós aplicamos o Algoritmo Genético com Elitismo (AGE) ao pro-

blema da tomografia de tempos de primeiras chegadas em dados de Ground Penetrating Radar

(GPR) adquiridos na geometria cross-hole. Simulando as etapas evolutivas de uma determinada

espécie, este método heuŕıstico localiza os posśıveis mı́nimos globais no espaço de soluções sem

calcular as derivadas da função objetivo, e sem depender do modelo inicial escolhido. Nós obti-

vemos bons resultados ao testarmos nosso método a dois conjuntos de dados sintéticos ruidosos.

O primeiro simula um meio de camadas horizontais e o segundo consiste em meio homogêneo

com uma anomalia isolada. Finalmente, a metodologia foi aplicada a um conjunto de dados

de campo adquiridos na ilha de Florianópolis. Um padrão de estratos cruzados foi obtido na

tomografia, o que está em concordância com a geologia local, cuja deposição sedimentar é for-

temente dominada pela ação eólica. Métodos heuŕısticos aplicados a problemas geof́ısicos de

grande dimensão apresentam bons resultados, porém são computacionalmente custosos. Esse

fato sugere o acoplamento dos métodos heuŕısticos e determińısticos para explorar as poten-

cialidades de cada técnica de otimização. Optamos por fazer o texto da dissertação na forma

de uma publicação cient́ıfica que compõe o corpo principal deste volume. Esta publicação ci-

ent́ıfica foi submetida à revista Geophysical Prospecting em 16 de janeiro de 2012 e conta com

a co-autoria de Saulo Siqueira Martins e Jandyr de Menezes Travassos.
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Abstract

Traditionally, first-arrival travel time tomographic problems are treated as nonlinear in-

verse problems solved by deterministic optimization methods. These methods minimize the

objective function by taking its derivatives. In some problems these derivatives are slow to

compute and the method becomes inefficient. Another limitation inherent to deterministic

methods is the strong relation between the starting model and local minima entrapment. To

deal with these drawbacks, we apply a genetic algorithm with elitism (EGA) to cross hole

tomography of Ground Penetrating Radar (GPR) data. Regardless the starting model, this

heuristic method ideally finds the region of the solution space containing global minima without

calculating derivatives. We obtain good results in applying our method in two noise-corrupted

synthetic cross hole data sets. The first simulates horizontal strata and the second consists

of a homogeneous background medium with single low-slowness anomaly. The methodology is

also applied to in field data where a cross-strata pattern is achieved. This pattern is in accor-

dance with the geological feature of the region. Heuristic methods applied to high-dimensional

geophysical problems yield good results but are computationally expensive. Coupling heuris-

tic and deterministic methods is recommended to exploit the full power of each optimization

technique.
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1 Introduction

Cross-hole first-arrival travel-time tomography was developed for the purpose of estimating

the velocity distribution between parallel boreholes. In typical tomographic problems, the

predicted data (travel-times) is calculated by a ray-tracing scheme (Fischer and Lees, 1993;

Avendonk et al., 2001; Bube and Langan, 2008). After that, the objective function (i.e., the

mismatch between predicted and measured data plus regularization) is minimized throw some

optimization technique to obtain a reasonably good velocity distribution.

Deterministic optimization methods are numerical techniques based on linear algebra con-

cepts and derivative calculations whose purpose is to minimize functions. This class of methods

is widely applied in tomographic problems mainly due to well established methods for stabi-

lizing the multimodal objective functions encountered. A considered number of travel-time

tomography methods based on deterministic techniques have been developed during the past

years (Bois et al., 1972; Scales, 1987; Phillips and Fehler, 1991; Moret et al., 2004; Zhdanov et

al., 2006; Zhou et al., 2008; Lelièvre et al., 2011). Also belonging to this class of methods, of

special attention is Aldridge and Oldenburg (1993) who present a two-dimensional tomographic

inversion of travel time data using the Least-Squares estimator and the laplacian smoothness

operator to minimize data misfit. To compute the travel-times they solve the eikonal equation

using the Finite-difference method (Vidale, 1988). As opposed to Vidale (1988), Spoupios et al.

(2001) use the shortest path method of Nakanishi and Yamagushi (1986) and Moser (1991) for

the ray-tracing (i.e., the forward problem) and invert cross-hole and Vertical Seismic Profiling

(VSP) data sets using Damped Least Squares. The linear systems are augmented to intro-

duce smoothness constraints to the velocity distribution. Following the shortest path method

approach, Becht et al. (2004) present an inversion strategy based on a simultaneous iterative

reconstruction technique, in which the angular aperture of the ray-tracing is diminished un-

til the number of travel-times of the smallest subset is sufficient to reconstruct a reasonably

good image. Despite the large applicability, these deterministic methods applied to travel-time

tomography present severe drawbacks associated with nonlinearity and irregularity of the to-

mographic objective function. These limitations promote local minima entrapment and a well

suited starting model is required for good convergence. In some optimization problems, the
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complexity of the objective function makes derivative calculations untreatable.

Another possibility to solve travel-time tomographic problems lies in the controlled ran-

dom search optimization methods. These methods, also known as heuristic methods, prevent

the local minima entrapment and promote a controlled search of the space of solutions. This

random process, in some cases, simulates natural phenomena algorithmically, like Simulated

Annealing (SA), Genetic Algorithm (GA) and Ant Colony Optimization. This algorithms have

the capability of finding global minima in functions with multiple local minima regardless star-

ting model. They are able to solve nonlinear and nonlocal optimization problems without the

need for curvature information and, consequently, without the need for derivative calculations.

These features can be particularly useful because they allow the use of fast approximate forward

modelling, for which no exact derivative may be available. This results in a reduction of the

computational effort. Although there are notable improvements in comparison with determinis-

tic methods, the large dimensionality involved in most geophysical optimization problems can

reduce the efficiency of heuristic methods. Furthermore, the stabilization of the tomographic

objective function through regularization is usually difficult to implement. These drawbacks

make the use of heuristic methods in geophysical inverse problems rare in the literature. Ne-

vertheless, Boschetti et al. (1996) developed an inversion of seismic refraction data using genetic

algorithms in a pseudo-subspace search method. They complemented the study by coupling

heuristic and deterministic methods in their inversion scheme. Smith and Ferguson (2000)

developed an interesting tomographic inversion of refracted seismic waves using Price (1977)

algorithm. The model is specified as a two-dimensional assembly of polygonal bodies. The

seismic velocities in these polygons maybe constant or may be defined as a function of depth

or location. The parameters consist of the polygon vertex coordinates and velocity function

coefficients. Velis (2001) utilized the Very Fast Simulated Annealing, implemented by Ingber

(1989) to find the most promising areas in the solution space by inverting travel-times from

2-D anomalous structures.

We present the genetic algorithm with elitism (EGA) as the heuristic method for mini-

mizing the tomographic objective function regardless the initial population. To achieve this

goal, we construct a network with 226 nodes representing the interpretive model in which the
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shortest path method of Nakanishi and Yamagushi, (1986) and Moser (1991) is applied for first-

arrival travel-time calculation. This ray-tracing technique is fast and accurate given different

velocity distributions. A brief discussion about the limitations of the shortest path method is

also presented to complement the study on ray-tracing. We then apply the EGA as a tool for

the Ground Penetrating Radar (GPR) tomography of first-arrivals. Starting from a random

population, genetic algorithms progressively modifies the solution set by simulating the evo-

lutionary behaviour of biological systems, until an acceptable result is achieved. Because of

the strong ambiguity inherent in geophysical problems, the tomographic objective function is

stabilized by a global-smoothness regularizing function. We test the potential and limitations

of our method on noise-corrupted synthetic data and field data acquired at Florianopolis, Santa

Catarina State, Brazil. We validate the final results using a statistical approach in which a

series of inversions is processed to compute the average and the uncertainties of the estimated

parameters.

2 Methodology

2.1 The cross-hole travel-time problem

Consider a two-dimensional rectangular region between two parallel wells. The Ground

Penetrating Radar (GPR) measurements are accomplished by using a transmitting antenna

(Tx) located in a borehole to emit a high-frequency electromagnetic pulse. The radiated pulse

propagates within the medium, and is eventually recorded at a receiving antenna (Rx) located

in another borehole a known distance away. During a cross-hole survey (i.e., a set of runs),

the recording process is repeated for various Tx and Rx positions along the boreholes. This is

done in order to have raypaths covering the whole area between the two boreholes. A Common

approach is to retrieve the arrival time of the direct wave from a subsurface velocity distribution.

The modelling procedure is based on the assumption that the travel time of a ray is the integral

of the slowness along the raypath:

t(ray) =

∫
ray

s(x, z)dl , (2.1)

7



where s(x, z) is the slowness (reciprocal velocity) at the point (x, z) and dl is the differential

length along the raypath. Equation 2.1 shows a linear relation between the slowness and the

travel-times. To solve Equation 2.1, we approximate the slowness distribution by an interpretive

model consisting of a regular two-dimensional grid of M discrete points, each with a constant

slowness value. These discrete points are henceforth referred to as nodes. Then, a network is

formed when the nodes are connected. These connections are referred to as edges (black lines

in Figure 1). The edges can bear different weights. In our case, the weight of the edges are

calculated by Equation 2.2 (Figure 1).

In ray-tracing, the weight is the travel-time between two nodes. After switch the slowness

distribution from continuous to discrete domain, Equation 2.1 becomes:

t(ray) =
n∑

i=1

(si + si+1)

2
dj, j = 1, ..., 4 (2.2)

where dj is the distance between connected nodes, n is the number of nodes in the raypath, si

and si+1 are consecutive nodes in the raypath. Equation 2.2 shows that the raypath of least

time is the sum of the travel times of each edge of the raypath. With this conception in mind,

we are applying Fermat’s principle during the ray-tracing to compute the first-arrival travel-

times between source-receiver pairs. Hereinafter, the raypath is referred to as shortest path.

The distance dj is calculated by triangular geometry, as presented in Figure 2. The distance d1

needs to be specified at the beginning of the network construction while d2, d3 and d4 (Figure

Figura 1: A clipping of the network to show how weigh the edges. Each node has a slowness value
(s1 up to s12) and the travel-times between neighbouring nodes are calculated by Equation 2.2.
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Figura 2: Edges construction. We use two isosceles triangles (blue dotted lines and red contiguous
lines) to calculate the edges distances.

3) are calculated by the following expressions:

d2 =

√(
3d1
2

)2

+ h2, (2.3)

d3 =

√(
d1
2

)2

+ h2 (2.4)

and

d4 = 2h (2.5)

where h is the height and d1 is the base of the dotted triangle presented in Figure 2. The height

of the dotted triangle is an input distance for the construction of the network, as well as the

distance d1.

The number of nodes in the network depends on the dimensions of the dotted triangle. The

Figura 3: Second-level forward star. Twelve neighbouring nodes (gray) of node P (white) are numbe-
red to show the clockwise connection. The nodes connection (edges) are represented by the distances
d1 up to d4.
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optimal configuration for the network is h = d1, because this reduces its anisotropy. These

issues will be treated in following section. Using a huge network increases the computation cost

during the application of the shortest path method (Nakanishi and Yamagushi, 1986; Moser,

1991). The nodes of the slowness model are distributed regularly and each node is connected

to its neighbouring nodes, just as shown in Figure 3. Our network is made exploiting the

triangular geometry to get better angular discretization during network construction. This an-

gular discretization allows more degrees of freedom finding the shortest path. The connection

geometry presented in the Figure 3 is referred to as second-level forward star (Mak and Ko-

ketsu, 2011). After network construction, the shortest path method can be applied to compute

the first-arrival travel times, which is based on Fermat’s principle. The shortest path length

algorithm used in this paper is implemented by Pape (1980) and based on Dijkstra (1959).

This algorithm finds the shortest paths from a specific node to all other nodes in a network.

The great advantage of Pape’s (1980) algorithm is that errors in minimal travel-times are often

corrected as soon as they are detected and not allowed to progress further.

2.2 Drawbacks of the shortest path method

Errors in the shortest path method are due to errors in the network geometry (Klimeš &

Kvasnička, 1994) and errors in the heterogeneity of the network. A coarse network may poorly

approximate slowness variations while a forward star with fewer neighbouring nodes results in

an anisotropic raypath with poor degrees of freedom (Louis et al., 2005). Figure 4a shows a

typical example of a forward star with low-connectivity. Meanwhile, increasing the number of

points in a network will not necessarily result in more accurate raypaths (Mak and Koketsu,

2011). The accuracy of the ray-tracing is only improved by using a forward star of higher level

(i.e., each node is connected to farther nodes). Nevertheless, the excessive growth of the forward

star level may cause errors in the calculation of the travel-times, since some nodes are no longer

considered in the shortest path. Figure 4b shows a forward star with high-connectivity and

longer edges, which promotes errors during the calculation of the minimum travel-time. We

choose to use a second-order forward star with 12 neighbouring nodes and a network with 226

nodes and triangular geometry (Figures 3 and 5) respectively, to diminish the drawbacks of the
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Figura 4: (a) Network geometry error. In this example we observe that the angles between edges are
equal but the first-order forward star with only 4 neighbouring nodes promotes poor approximation
of the shortest path.(b) Heterogeneity error. Longer edges (blue dotted lines) creates anisotropic
raypaths. The angles between black edges and blues dotted edges are different, which is another
indication of an anisotropic forward star.

shortest path method. For more detailed discussion on this issues see Fischer and Lees (1993),

Klimeš & Kvasnička (1994), Avendonk et al. (2001) and Louis et al. (2005).

Figura 5: Interpretive model sketch. Boreholes are 20 m apart and 9 m depth. The white circles,
black circles and yellow stars are the 226 nodes of the slowness model. The distances h and d1 are the
input dimensions to the network construction. Black lines connecting the nodes are the edges of the
network.
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2.3 Inverse Problem

Let tobs be a set of N first-arrival travel-times produced by an unknown slowness distri-

bution in the subsurface. We want to estimate an M -dimensional vector p (i.e., parameters)

of the slowness value of each node of the interpretive model (i.e., the network). To estimate

the parameters in a stable way, we need to introduce a priori information about the slowness

distribution. Traditionally, the a priori information incorporated in most geophysical inverse

problems is the global smoothness of the spatial distribution of the physical property (Backus

and Gilbert, 1968). This consists in requiring that each parameter pi (estimated slowness of

the i -th node) be as close as possible to parameter pj (estimated slowness of an adjacent node

either in x-or in the z-directions). We obtain a smooth estimate by minimizing the nonlinear

objective function:

φ(p) =
1

N
‖ tobs − t(p) ‖2 +λ

1

M
‖ Rp ‖2 (2.6)

where ‖ ‖ is the Euclidean norm, t(p) is an N -dimensional vector whose elements are the

first-arrivals computed through the interpretive model, R is an NxM matrix representing the

first-order difference operator of discrete derivatives in both the x- and z-directions and λ is a

regularizing parameter, selected as the smallest positive value producing a stable solution. The

regularizing parameter controls the tradeoff between the data misfit function (i.e., the first term

of Equation 2.6) and the global-smoothness function (i.e., the second term in Equation 2.6).

The addition of model-based constraints to the inverse problem is of upmost importance due

to the inherent non-uniqueness and lack of stability of the travel-time tomographic problem.

2.4 Inversion Tool: Genetic Algorithm

Genetic algorithms consist of a random search algorithm based on the mechanics of na-

tural selection and natural genetics (Goldberg, 1989). Genetic algorithms are widely used in

linear and nonlinear optimization problems due to its capacity of finding the global minima of

multimodal functions (Smith and Ferguson, 2000).

As in deterministic optimization methods, the genetic algorithms requires a set of initial
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estimates (i.e., an initial population). The initial population can be randomly selected between

a minimum and a maximum slowness value. The boundaries of the slowness values are referred

to as search limits. The search limits plays a crucial role in the convergence of the genetic

algorithms. If the search limits are too large, the genetic algorithms will need an equally large

number of iterations (i.e., generations) to converge and the computational cost will make the

problem intractable. Otherwise, if the search limits are wrongly set up, the genetic algorithms

will converge to local minima that does not fit the data. These search limits can be used as a

geological constraint.

The relevant stages in the implementation of the genetic algorithm, such as crossover, mu-

tation and reproduction are widely discussed in Goldberg, (1989) and Boschetti et al., (1996).

We consider an extra stage in our implementation called elitism. At this stage, the fittest

individual of the current generation is replicated to the next generation. The elitism can be

considered as a convergence accelerator, because it allows the appearance of a ”super-man”at

the last generations. Genetic algorithms with this strategy are referred to as genetic algorithms

with elitism or EGA (Chakraborty and Chaudhuri, 2003). We implement the EGA to minimize

the nonlinear objective function (Equation 2.6) for some value of λ.

To check the stability of the estimates produced by the EGA, we use an elementary statistical

analysis which consists in running a series of inversions by feeding the pseudo-random number

generator with different seeds. This means that the initial population undergoes slight changes

that promote slight differences in the estimates if the problem is well-regularized. Then we

collect the best individual of each inversion and calculate the mean (pi) of each parameter of

the interpretive model by the expression:

pi =
1

Q

Q∑
j=1

pji , i = 1, ...,M (2.7)

where Q is the number of inversions, pji is the i-th parameter of the j-th inversion and and

M is the number of parameters (slowness values) in the interpretive model. The uncertainties

of every parameter are calculated as follows

13



σi
m
∼=

σi

√
Q

, Q > 4 (2.8)

and

σi =

√√√√ 1

Q− 1

Q∑
j=1

(pi − pji )2 , i = 1, ...M (2.9)

where σi is the sample standard deviation of each parameter,pi is the mean of each parameter

and pji is the slowness value. Statistically, there is about 68% chance that pji lies in the interval

presented as follows (Young, 1962):

pji = pi ± σi
m (2.10)
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3 Results

Two numerical tests on synthetic data are undertaken to study the proposed methodology.

The first synthetic data set is generated by a model of horizontal layers in which the slowness

increases with depth (horizontal strata model). The second synthetic data set simulates an

isolated buried geological body with anomalous slowness in a homogeneous slowness background

(low-slowness anomaly model). For these tests, we use an interpretive model consisting of

two ideal boreholes located 20 m apart and with 9 m depth, with twenty-one Transmission

positions (Tx) in the transmission borehole and twenty-one Receiver positions (Rx) in the

receiver borehole. The input distances for network construction are d1 = 0.45 m and h =

2.0 m. This configuration results in 441 shortest raypaths (i.e., 441 first-arrival travel-times)

for the 226 unknown parameters (i.e., slowness of each node of the network). Figure 3 shows

details of the interpretive model used in all tests. Our EGA was allowed to run for 1200

generations. When running on a computer with an Intel (R) Core (TM) i7-2600 CPU @ 3.40

GHz processor, the total time for inversion was approximately 12 h. In order to simulate a

practical situation with noisy observed data, the synthetic data sets were contaminated with

normally distributed pseudo-random noise with zero mean and standard deviation of 10−3 ns.

To check the stability of the estimates produced by the EGA, twenty inversion schemes with

different initial populations are obtained by feeding the random number generator with different

seeds. For all tests, an average slowness model and their uncertainties are computed to obtain

the final results.
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3.1 Horizontal strata model

Figure 6a shows the true slowness model that simulates horizontal strata in which the slow-

ness values vary from 18.5 (m/ns)−1 to 40.5 (m/ns)−1. The true ray diagram is plotted in

the background of Figure 6a to show the ray-coverage. As partial results, three of the twenty

inverted slowness models and their respective ray diagrams are presented in Figure 6b-d. The

initial population of each inversion is randomly selected between search limits 18.4 (m/ns)−1

and 40.6 (m/ns)−1. The objective function φ(p) (Equation 2.6) is minimized using regulari-

zation parameter λ = 0.1 and its convergence is plotted in Figure 6e. Although the inverted

slowness models present small smeared features due to poor ray-coverage, the stratified pattern

is observed in Figure 6b-d. These partial results suggests that the EGA has been able to find

good individuals in the solution space. The good fitness between observed and predicted data

(Figure 6f-h) confirms the good performance of the EGA facing this test. We present the ave-

rage of the twenty inverted slowness models in Figure 7b and their respective uncertainties in

Figure 7d. The small blurred features presented in Figure 7b-d are diminished in the average

slowness model. The ray diagram in Figure 7b is in good accordance with that obtained in true

model (Figure 7a).
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Figura 6: Partial results from horizontal strata model. (a) True slowness model and true ray diagram
(shortest raypaths). Inverted slowness models and their respective ray diagrams from (b) seed 01, (c)
seed 02 and (d) seed 03. Slowness values are indicated by the color bar. The circles in the whole
slowness maps are the nodes of the interpretation model. The x-axis is the distance between wells
and the z-axis is the wells depth. (e) The φ(p) convergence against the number of generations for
each of the three inversions. Misfit versus the number of shots from seed 01 (f), seed 02 (g), seed 03
(h). The black asterisks are the first-arrivals from true slowness model and the red asterisks are the
first-arrivals from the inverted slowness model.
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Figura 7: Final results from horizontal strata model. (a) true model, (b) average slowness model.
The x-axis is the distance between wells and the z-axis is the wells depth. (c) Difference between
observed and predicted data and (d) slowness uncertainties.

3.2 Low-slowness anomaly model

Figure 8a illustrates a low slowness anomaly model buried in the center of a constant-slowness

background. The background slowness value is 18.5 (m/ns)−1 and the slowness of the low

slowness anomaly is 15.0 (m/ns)−1. The objective function φ(p) (Equation 2.6) is minimized

with λ = 10. The true ray-coverage is represented by the ray diagram in Figure 8a. The search

limits for initial population selection are defined between 15.0 (m/ns)−1 and 18.5 (m/ns)−1.

The partial results in Figure 8b-d present a low slowness anomaly without delineated borders.

This means that the EGA succeeded in locating good individuals in this solution space. The

global-smoothness function helps the EGA to converge to a relative stable solution. The ray-

coverages of the partial results (Figure 8b-d) present small differences between the true raypaths.

The misfits in Figure 8f-h are in good agreement with observed data. The average slowness

model and its ray-diagram are presented in Figure 9b. As we can see, the low slowness anomaly

was better delineated, but its slowness amplitude is slightly higher than in the true model.

This means that another regularizing function should be considered. The red regions in the

uncertainties map (Figure 9d) show that the EGA sensibility zone is directly related to the
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ray-coverage.

Figura 8: Partial results from low-slowness anomaly model. (a) True slowness model and true ray
diagram (shortest raypaths). Inverted slowness models and their respective ray diagrams from (b)
seed 01, (c) seed 02 and (d) seed 03. Slowness values are indicated by the color bar. The circles in
the whole slowness maps are the nodes of the interpretation model. The white line in the center of
the slowness maps represents the borders of the simulated geological body. The x-axis is the distance
between wells and the y-axis is the wells depth. (e) The φ(p) convergence against the number of
generations for each of the three inversions. Misfit versus the number of shots from seed 01 (f), seed
02 (g), seed 03 (h). The black asterisks are the first-arrivals from true slowness model and the red
asterisks are the first-arrivals from the inverted slowness model.
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Figura 9: Final results from low-slowness anomaly model. (a) true model, (b) average slowness model.
The white line in the center of the slowness maps represents the borders of the simulated geological
body. The x-axis is the distance between wells and the z-axis is the wells depth. (c) Difference between
observed and predicted data and (d) slowness uncertainties.

3.3 Application to field data

Following the experiments on synthetic data, we apply the proposed methodology on data sets

acquired in a region of the island of Florianopolis, in Santa Catarina, Brazil. The local geology

is composed of unconsolidated sandy deposits of mixed origin: marine, fluvial and eolic. The

soil is a gray-brownish fine sand with less than 5% of silts and clay woth a hydraulic flux of 2.8

m/yr and an effective porosity of 0.2 (Conceição et al., 2007). It is a region heavily weathered

by wind action, which promotes cross-strata sedimentation. Cross-strata are strata that are

inclined with respect to a thicker stratum within which they occur. Cross-strata are commonly

seen in river deltas, streams segments and beaches (Skinner and Porter, 1987).

The cross-well acquisition geometry consists on a survey with 46 runs in which the mea-

surement points are spaced 0.2 m apart in both wells. This configuration provides a set of

2123 travel-times. The MALA equipment was used with a time window of 700 ns and 100

MHz frequency. The interpretive model is the same as the one applied on synthetic cases. We

interpolate the raw data to match the positions of the antennas to the proposed interpretive
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model. The two initial runs in the survey are discarded due to the proximity of the transmitter

to the borehole mouth (Conceição et al., 2007).

We allowed the EGA to perform 2000 generations with λ = 0.1 and search limits defined

between 16.6 (m/ns)−1 and 25.0 (m/ns)−1. The partial results are presented in Figure 10.

Although the high noise in the data has led to some artifacts, the three inverted slowness

models in Figure 10a-c present a cross-strata pattern. The data misfit presented in Figure 10d-

f reveals a mismatch between observed and predicted data for the last shots, which is related to

errors in the ray-tracing. The average slowness model presented in Figure 11a shows a rise on

the cross-strata pattern. Figure 11c shows an over-predicted data, i.e., the observed data (black

asterisks) are smaller than predicted data (red circles). This behaviour is probably related to

a coarse discretization of the interpretive model.
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Figura 10: Partial results from field data. Inversion results and ray diagram from (a) seed 01, (b)
seed 02, (c) seed 03. Slowness values are indicated by the color bar. The circles in the whole slowness
maps are the nodes of the interpretive model. Misfit between observed and predicted data from (d)
seed 01, (e) seed 02, (f) seed 03(g). The φ(p) convergence against the number of generations for each
of the three inversions.
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Figura 11: Final results from field data. (a) average slowness model with ray diagram, (b) slowness
uncertainties map and (c) Misfit between observed and predicted data.

4 Conclusions

We have presented a genetic algorithm with elitism (EGA) for a cross-hole travel-time

tomography which incorporates an efficient shortest path method in conjunction with a re-

gularized inversion approach. The 2-D shortest path method is well suited to compute the

first-arrivals accurately and in a rapid fashion. Despite of small heterogeneities in the interpre-

tive model, the inverted ray-diagrams presented similarities to the true ray-diagrams.

The EGA proved to be powerful in minimizing multimodal functions regardless the starting

model. However, it required a huge number of generations to achieve good convergence. This

limitation suggests that the combination of heuristic and deterministic methods could be used

as an optimal inversion tool. Taking the average of the inverted seems to smooth the blurred

features in the all inverted slowness models. The uncertainty maps show the sensitivity zones

of the EGA.

The EGA requires appropriate search limits to reconstruct slowness models that fit the data.

We have also demonstrated that our algorithm is capable of producing reasonable slowness

models using two different noise-corrupted synthetic data sets.

The results obtained by applying the methodology to field data showed that a coarse inter-
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pretive model promotes a slight mismatch between observed and predicted data. Nevertheless,

the interpretation is in concordance with the geological aspects of the region.
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